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Abstract

Monteiro Nunes, lan; Soledade Poggi de Aragao, Marcus Vini-
cius (Advisor); Neves de Oliveira, Hugo (Co-Advisor). Open-set
semantic segmentation for remote sensing images. Rio de
Janeiro, 2023. 211p. Tese de Doutorado — Departamento de Infor-
matica, Pontificia Universidade Catélica do Rio de Janeiro.

Collecting samples that exhaust all possible classes for real-world tasks is
usually difficult or impossible due to many different factors. In a realistic/feasi-
ble scenario, methods should be aware that the training data is incomplete and
that not all knowledge is available. Therefore all developed methods should be
able to identify the unknown samples while correctly executing the proposed
task to the known classes in the tests phase.

Open-Set Recognition and Semantic Segmentation models emerge to
handle this kind of scenario for, respectively, visual recognition and dense
labeling tasks. Initially, this work proposes a mnovel taxonomy aiming to
organize the literature and provide an understanding of the theoretical trends
that guided the existing approaches that may influence future methods. This
work tested the proposed techniques on remote sensing data, establishing new
state-of-the-art results for the used datasets. Remote sensing data differs from
RGB data as it deals with a plethora of sensors and with a high geographical
variation.

Open set segmentation is a relatively new and unexplored task, with
just a handful of methods proposed to model such tasks. This work also
proposes two distinct techniques to perform open-set semantic segmentation.
First, a method called OpenGMM extends the OpenPCS framework using a
Gaussian Mixture of Models to model the distribution of pixels for each class
in a multimodal manner. Second, the Conditional Reconstruction for Open-
set Semantic Segmentation (CoReSeg) method tackles the issue using class-
conditioned reconstruction of the input images according to their pixel-wise
mask. CoReSeg conditions each input pixel to all known classes, expecting
higher errors for pixels of unknown classes.

Qualitative results observation suggested that both proposed methods
produce better semantic consistency in their predictions than the baselines,
resulting in cleaner segmentation maps that better fit object boundaries. Also,
OpenGMM and CoReSeg outperformed state-of-the-art baseline methods on
Vaihingen and Potsdam ISPRS datasets.

The third proposed approach is a general post-processing procedure that

uses superpixels to enforce highly homogeneous regions to behave equally,
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rectifying erroneous classified pixels within these regions. We also proposed
a novel superpixel generation method called FuSC.

All proposed approaches improved the quantitative and the qualitative
results for both datasets. Besides that, CoReSeg’s prediction post-processed
with FuSC achieved state-of-the-art results for both datasets.

The official implementation of all proposed approaches is available at

https://github.com/iannunes.

Keywords
Open-set; Segmentation; Convolutional Neural Networks; Remote Sen-

sing; Deep Learning; Data Science; Recognition; Auto-encode.
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Resumo

Monteiro Nunes, lan; Soledade Poggi de Aragao, Marcus Vinicius;
Neves de Oliveira, Hugo. Segmentacao semintica de conjunto
aberto aplicada a imagens de sensoriamento remoto. Rio
de Janeiro, 2023. 211p. Tese de Doutorado — Departamento de
Informatica, Pontificia Universidade Catolica do Rio de Janeiro.

Coletar amostras que esgotam todas as classes possiveis para tarefas do
mundo real geralmente ¢ dificil ou impossivel devido a muitos fatores diferentes.
Em um cendrio realista/vidvel, os métodos devem estar cientes de que os
dados de treinamento estdo incompletos e que nem todo o conhecimento esta
disponivel. Portanto, todos os métodos desenvolvidos devem ser capazes de
identificar as amostras desconhecidas enquanto executam corretamente a tarefa
proposta para as classes conhecidas na fase de testes.

Modelos de Reconhecimento de Conjunto Aberto e Segmentagdo Seman-
tica surgem para lidar com esse tipo de cendario para, respectivamente, tarefas
de reconhecimento visual e rotulagem densa. Inicialmente, este trabalho propoe
uma nova taxonomia com o objetivo de organizar a literatura e fornecer uma
compreensao das tendéncias tedricas que guiaram as abordagens existentes que
podem influenciar métodos futuros. Este trabalho testou as técnicas propostas
em dados de sensoriamento remoto, estabelecendo novo estado-da-arte para os
resultados dos conjuntos de dados utilizados.

A segmentacao de conjuntos abertos é uma tarefa relativamente nova e
inexplorada, com apenas um punhado de métodos propostos para modelar tais
tarefas. Este trabalho também propoe duas técnicas distintas para realizar a
segmentacao semantica de conjunto aberto. Primeiro, um método chamado
OpenGMM estende a estrutura OpenPCS usando uma mistura gaussianas
para modelar a distribuicao de pixels para cada classe de maneira multimodal.
Em segundo lugar, o método de Reconstrucao Condicional para Segmentacao
Semantica de Conjunto Aberto (CoReSeg) aborda o problema usando a
reconstrucao condicionada por classe das imagens de entrada de acordo com
sua mascara. CoReSeg condiciona cada pixel de entrada para todas as classes
conhecidas, esperando erros maiores para pixels de classes desconhecidas.

A observacao dos resultados qualitativos mostra que ambos os métodos
propostos produzem melhor consisténcia semantica em suas predi¢oes do que as
métodos de referéncia, resultando em mapas de segmentacao mais limpos que
se ajustam melhor aos limites do objetos. Além disso, OpenGMM e CoReSeg
superaram o estado-da-arte estabelecido pelos métodos de referéncia para

conjuntos de dados de Vaihingen e de Potsdam disponibilizados pelo ISPRS.
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A terceira abordagem proposta é um procedimento geral de pds-
processamento que usa superpixels para forgar regides altamente homogéneas
a se comportarem igualmente, corrigindo pixels mal classificados dentro dessas
regioes. Também propusemos um novo método para geragao de superpixels
chamado FuSC.

Todas as abordagens propostas melhoraram os resultados quantitativos
e qualitativos para ambos os conjuntos de dados. Além disso, CoReSeg pos-
processado com FuSC estabeleceu um novo estado-da-arte para segmentacao
de ambos os conjuntos de dados.

A implementacao oficial de todas as abordagens propostas esta disponivel

em https://github.com/iannunes.

Palavras-chave
Conjunto aberto; Segmentagao; Redes Neurais Convolucionais; Senso-
riamento remoto; Aprendizado profundo; Ciéncia de dados; Classificacao;

Auto-encoder.
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List of Figures

Figure 1.1 Generic example of shallow image learning/processing
pipeline.

Figure 2.1 An example showing an urban image and its closed-set
semantic segmentation.

Figure 2.2 FCN is efficient in learning dense tasks like semantic
segmentation. The encoder receives the input and reduces the
spatial dimensions increasing the semantic dimensions with a
higher number of channels in each layer, the final layer of an
Encoder is called the latent representation (z). To perform
semantic segmentation, the FCN compact the z layer into a
k channel space layer, with k equal to the number of known
semantic classes, then interpolated to the original input size.
Figure based on Long et al. (2015).

Figure 2.3 The figure is based on the proposed U-net architecture
by Ronneberger et al. (2015). @ represents the concatenation
of copied feature maps with the output of the transposed
convolution of the last network layer. The blue and green
blocks are convolutional blocks of the Encoder and Decoder,
respectively. The width of the blue and green boxes represents
the number of channels, and the height represents the spatial
dimension of the layer. Bigger green boxes represent a greater
number of input channels.

Figure 2.4 The figure shows a general schematic for an auto-
encoder. The encoder compresses the input data to the latent
Z layer. The latent layer is then up-scaled/decompressed to its
original size.

Figure 2.5 The figure depicts the workflow of the channel atten-
tion sub-module. The & symbol represents the concatenation
operation and the [ represents the sigmoid operation.

Figure 2.6 The figure depicts how spatial attention works. The [
represents the sigmoid operation.

Figure 2.7 The figure shows an overview of CBAM with the refine-
ment of the input made by the attention sub-modules. The ®
symbol represents the concatenation operation, | represents the
sigmoid operation, ® represents the pixel-wise multiplication,
and the ® symbol stands for a vector-tensor multiplication.

Figure 2.8 Figure 2.7 is shown an overview of CBAM with the two
sub-modules showing how the input feature map is adaptively
refined through the module Woo et al. (2018). Figure 2.5 shows
the sub-module for channel attention and Figure 2.6 shows the
sub-module that handles spatial attention.
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Figure 2.9 The figure shows the functioning of the FiLM layer
applied to a CNN. The ® symbol stands for the Hadamard
product between the + and the channels, and the & symbol
stands for the summation of the § vector with the channels.

The subscripts ¢ and i stands for the ¢t feature map of i input.

Figure 2.10 An example of 2 images segmented using the SLIC al-
gorithm. Each presented image is segmented with three distinct
approximate superpixel sizes: 64, 256, and 1024 pixels. Figure
extracted from Achanta et al. (2012).

Figure 2.11 An example of an image segmented using the QuickShift
algorithm. The image is shown segmented with three distinct
superpixel configurations. Figure adapted from Vedaldi and
Soatto (2008).

Figure 2.12 Three images segmented using Felzenszwalb algorithm.
Figure adapted from Felzenszwalb and Huttenlocher (2004).

Figure 3.1 Difference between training and deployment phases in
OSR (a) and OSS (b) scenarios. Red circle samples (for OSR)
or red pixels (for OSS) represent samples unknown in training.
3.1(a)OSR
3.1(b)OSS

Figure 3.2 The evolution in the number of publications of the
combined search results is shown in grey and in yellow is the
final number of selected articles.

Figure 3.3 Figures present the schematics for the proposed taxon-
omy: statistical modeling (a); reconstruction-based (b); auxil-
iary data (c). In all figures, x represents the input data, & the
reconstructed input, M the closed-set model, 7 the threshold
used to identify the OOD pixels, £ the encoder and D the de-
coder of the reconstruction auto-encoder, and beta a discrimi-
nator model.
3.3(a)Statistical Modeling
3.3(b)Reconstruction-based
3.3(c)Auxiliary data

Figure 3.4 Classification of the selected publications under the
proposed categories of the taxonomy presented in Section 3.1.2.
Each category can be further divided into more refined groups
according to the methods’ characteristics. Each method may fall

under more than one group, as they are not mutually exclusive.

Figure 3.5 OpenPixel and Morph-OpenPixel architectures. The
OpenPixel representation goes up to the semantic map. Morph-
OpenPixel includes a morphological filter for post-processing
the OpenPixel output.

19

20

21

25
25
25

28

29
29
29
29

30

35


DBD
PUC-Rio - Certificação Digital Nº 1821003/CA


PUC-Rio- CertificagaoDigital N° 1821003/CA

Figure 3.6 During training both OpenFCN and OpenPCS behave

like a traditional closed-set FCN for semantic segmentation for
the KKCs. The closed-set FCN is shown in the middle of the
figure. During validation, OpenFCN computes OpenMax and
the Weibull distributions. During testing, the probabilities for
OSS are thresholded to predict the unknown pixels. OpenPCS
concatenates the activation maps (in this example a(*3), q(*)
and a(")). a("), aL4) are scaled up to the dimensions of a(*s)
to produce a column vector for each predicted KKC pixel.
OpenPCS reduces the concatenated high-dimensional feature
space to a low-dimensional (a(*")) space using the Principal
Components. For each KKC, a multivariate Gaussian is fitted,
and an array of log-likelihoods is thresholded to identify the
OOD pixels. Adapted from Oliveira et al. (2021).

Figure 3.7 Simplified training schematics
Figure 3.8 Simplified testing schematics
Figure 3.9 The figure shows the C2AE schema divided into three

phases. 1) Closed-set pre-training follows the traditional
closed-set training with an Encoder (F') and a shallow classifier.
2) Open-set training shown in Figure 3.7, uses the pre-
trained closed-set encoder F' with its weights frozen. F' is used
to train a decoder to reconstruct the input conditioned to the
label. Reconstructions conditioned to the correct class yield a
better reconstruction (smaller error value) than reconstructions
conditioned to the wrong class (higher error value). In the
end, EVT models reconstruction errors defining the operating
threshold. 3) Open-set testing shown in Figure 3.8, each
input is conditioned to every KKC getting the minimum error
reconstruction. The model yields the classification of the shallow
classifier if the minimum reconstruction error is below the
threshold, otherwise, it is unknown.

Figure 4.1 The figure shows an example of how different objects

can be represented by distinct data distributions. Due to the
multimodal representation capability, GMM is better suited for

representing real-world data than OpenPCS (Oliveira et al., 2021).
Figure 4.2 Training schema where e; denotes a layer on the closed-

set encoder, d; denotes a layer on the reconstruction decoder,
and f; denotes a simplified FiLM conditioning layer that has
two encoders § and . The model is trained to reconstruct
each image with matching and non-matching masks as a way
of enforcing the conditioning with good (match) and poor (non-
match) representations of the original image.

Figure 4.3 Concatenation conditioning - tensors from the ¢, condi-

tioning encoder with the e, closed-set encoder are concatenated
and then processed by the reconstruction decoder.
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Figure 4.4 Additive conditioning - a pixel-wise (element-wise) sum-
mation is computed between the ¢, conditioning encoder with
the e, closed-set encoder, and the resultant tensor is then pro-
cessed by the respective reconstruction decoder.

Figure 4.5 Multiplicative conditioning - a pixel-wise (element-wise)
multiplication is computed between the ¢, conditioning encoder
and the e, closed-set encoder, and the resultant tensor is then
processed by the respective reconstruction decoder.

Figure 4.6 Additive-multiplicative conditioning - an affine operation
for each element in the closed-set encoder computed with the
pixel-wise (element-wise) multiplication between the -, condi-
tioning encoder and the e, closed-set encoder, also computed
a pixel-wise (element-wise) summation between [, conditioning
encoder and e,. The affine operation f, = v, X e, + 8, is com-
puted for every parameter in the closed-set encoder and used as
input to the reconstruction decoder.

Figure 4.7 This figure shows the two variations for the use of skip
connections in the reconstruction process. Figure 4.7(a) shows
the proposed Base model using the closed-set skip connections
only as input for the conditioning mechanism, Figure 4.7(b)
shows a variation called the Full model that also concatenates
the same closed-set skip connections used before with the con-
ditioned tensor to use as input for the respective reconstruction
decoder layer.
4.7(a)Base model
4.7(b)Full model - closed-set skip connections to reconstruction

decoder.

Figure 4.8 This figure shows both variations presented in Figure 4.7
adapted to use the CBAM (Woo et al., 2018) attention mechanism.
4.8(a)Base model
4.8(b)Full model - closed-set skip connections to reconstruction

decoder

Figure 4.9 The figure shows the “Deploy” schema where e; denotes
a layer on the closed-set encoder, d; denotes a layer on the recon-
struction decoder, and f; denotes a simplified FiLLM conditioning
layer that has two encoders 5 and 7.

Figure 4.10 From left to right, the figure shows the input image, the
ground truth with the UUC in red, the closed-set prediction, the
four conditioned reconstruction error images, and the computed
minimum error image. The figure shows impervious surfaces as
UUC, to produce the scenario we used the LOCO protocol. The
used colors are: white for impervious surfaces; dark blue for
building; light blue for low vegetation; green for high vegetation;
yellow for car; and red for the UUC. Also, the darker the pixel,
the smaller the error.
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Figure 4.11 This figure shows the effect of the use of the proposed

post-processing. The first line of images shows in Figure 4.11(a)
the original image and in Figure 4.11(b) the segmented image
produced using the same segmentation used to post-process the
scores. The second line shows in Figure 4.11(c) the output score
from the OSS method and in Figure 4.11(d) the superpixel post-
processed score using the Algorithm 1.

Figure 4.12 The figure shows a toy example illustrating the workflow

to merge two different superpixel segmentations. First, the in-
put image x is processed by 2 different superpixel segmentation
algorithms (Alg. 1 and Alg. 2). Then the generated segmenta-
tions s, and s, are merged into the final segmentation s,
using the merging procedure described in Algorithm 2.

sC

Figure 4.13 The figure shows the comparison of the resulting seg-

mentation from two SPS algorithms (Felzenszwalb and SLIC)
and our proposed fusion algorithm, FuSC. The first and third
rows show the input image superimposed with the superpixel
segments and the second and fourth rows depict the closer class
fit of each segment according to the real labels. Red arrows in-
dicate areas where class boundaries failed when using one single
SPS algorithm, while gray arrows point to these same regions
fixed after applying the FuSC algorithm.

Figure 5.1 The figure describes the U-Net (Ronneberger et al., 2015)

used as backbones and also shows the variation adding the
CBAM (Woo et al., 2018) attention mechanism. The U-Net with
CBAM model is the same standard U-Net with the attention
mechanism added after the blocks as shown in the figure. All
convolution layers use default padding and stride equal to one.

Figure 5.2 The figure describes the two used backbones: DN-121

(Zagoruyko and Komodakis, 2016) and WRN-50 (Huang et al.,
2017); and also shows the variations adding the CBAM (Woo
et al., 2018) attention mechanism to both models. WideResNet
and DenseNet use the same basic dense block. While DenseNet
adds more sequential blocks making the network deeper, the
WideResNet uses fewer blocks but increases the number of
channels. For our experiments, WideResNet uses twice more
channels as DenseNet. The number of dense blocks used are
shown inside the layer block.

Figure 5.3 An example of LOCO protocol showing a small patch

extracted from the Vaihingen dataset as the input image. On
the right, one patch presents the original closed-set classes, and
the other five patches show the generated labels with the LOCO
protocol according to the legend.
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Figure 6.1 The figure shows qualitative results for an image from
the Vaihingen dataset under different settings of UUCs and
OSS methods. The proposed methods and the superpixel post-
processing method generates cleaner segmentation, avoiding the
usual mislabeling of unknown pixels. 85

Figure 7.1 From up to bottom, the figure shows the input image, the
ground truth with the UUC in red, the closed-set prediction, the
four conditioned reconstruction error images, and the computed
minimum error image. The crossed circle indicates that the
reconstruction is not conditioned to that class since it is the
UUC. Each column of the figure shows a distinct UUC scenario
produced using the LOCO protocol. The used colors are: white
for impervious surfaces; dark blue for building; light blue for low
vegetation; green for high vegetation; yellow for car; and red for
the UUC. Also, the darker the pixel, the smaller the error. 109
Figure 7.2 The figure shows the open-set segmentation predictions
obtained using the best hyperparameter configuration for Open-
PCS, OpenGMM, and CoReSeg+Att for one test image of the
Vaihingen dataset with all tested UUCs. Also, results with
and without post-processing are presented on the right of the
base prediction. The exhibited SPS configuration used for post-
processing is the best one for each method on average. The used
colors are: white for impervious surfaces; dark blue for building;
light blue for low vegetation; green for high vegetation; yellow
for car; and red for the OOD pixels. 112
Figure 7.3 The figure shows the open-set segmentation predictions
obtained using the best hyperparameter configuration for Open-
PCS, OpenGMM, and CoReSeg+Att for one test image of
the Potsdam dataset with all tested UUCs. Also, results with
and without post-processing are presented on the right of the
base prediction. The exhibited SPS configuration used for post-
processing is the best one for each method on average. The used
colors are: white for impervious surfaces; dark blue for building;
light blue for low vegetation; green for high vegetation; yellow
for car; and red for the OOD pixels. 113
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Table 5.2 The table shows the results for the closed-set models used
as backbones for the OSS task for the Potsdam dataset. The
UUC column shows the hidden class used to emulate an open-set
scenario using the LOCO protocol. The A column indicates the
use of the CBAM attention mechanism. The evaluations used
four metrics: j for the mean intersection over union (Jaccard
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Table 5.4 The table shows all mapped classes for Vaihingen and
Potsdam datasets. For this work classes: 6 (miscellaneous) and
7 (segmentation boundaries) are set as unknown.

Table 5.5 The table shows the selected patches according to their
original nomenclature. Each dataset was divided into three
divisions: train, validation, and test.

Table 5.6 The table presents the average count of pixels per super-
pixel for the Vaihingen dataset.

Table 6.1 The table shows results for the CoReSeg method and the
variations proposed in section 4.2 tested only with the Vaihin-
gen dataset, varying 3 different parameters (Skip, FC, and LR).
The Skip column indicates the skip connection strategy, using
only before conditioning or concatenating with the conditioned
tensor to feed the reconstruction decoder. The FC' column indi-
cates if a final convolutional layer is added, and the LR column
indicates the initial learning rate for the reconstruction decoder.
Also, the MA column indicates if CoReSeg is using the CBAM
attention mechanism in the reconstruction module, and the BA
column if the U-net backbone is using the CBAM attention
mechanism. In bold are the best results for each combination
of method and backbone, the darkest gray rows are compared
between themselves. The UUC numbers are respectively: 0 -
impervious surfaces; 1 - building; 2 - high vegetation; 3 - low
vegetation; and 4 - car.

Table 6.2 The table shows the results for the Vaihingen dataset
using CoReSeg compared with the results obtained from post-
processing with different superpixel settings. The first row shows
CoReSeg without post-processing, and the rows below present
the results for distinct superpixel configurations sorted by av-
erage AUROC. The best results achieved are in bold for each
column. This table shows AUROC results in all columns. The
UUC numbers stand for respectively: 0 - impervious surfaces; 1
- building; 2 - high vegetation; 3 - low vegetation; and 4 - car.

Table 6.3 The table shows the results for the Vaihingen dataset
using OpenGMM with DenseNet-121 as the backbone compared
with the results obtained from post-processing with different
superpixel settings. The first row shows CoReSeg without post-
processing, and the rows below present the results for distinct
superpixel configurations sorted by average AUROC. The best
results achieved are in bold for each column. This table shows
AUROC results in all columns. The UUC numbers stand for
respectively: 0 - impervious surfaces; 1 - building; 2 - high
vegetation; 3 - low vegetation; and 4 - car.
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Table 6.4 The table shows the results for the Vaihingen dataset
using OpenGMM with WideResNet-50 as the backbone com-
pared with the results obtained from post-processing with dif-
ferent superpixel settings. The first row shows CoReSeg without
post-processing, and the rows below present the results for dis-
tinct superpixel configurations sorted by average AUROC. The
best results achieved are in bold for each column. This table
shows AUROC results in all columns. The UUC numbers stand
for respectively: 0 - impervious surfaces; 1 - building; 2 - high
vegetation; 3 - low vegetation; and 4 - car. 81

Table 6.5 The table presents the average results of each execution
using the same superpixel algorithm or FuSC configuration. The
column Seg. config indicates which algorithm is aggregated to
present in the UUCs columns the average AUROC and the
standard deviation for each UUC. The last column also shows
the overall average between all UUCs. The dark gray rows are
the baseline OSS results of each method and backbone without
post-processing. 82

Table 6.6 The table compares the average AUROC results between
all tested scenarios with and without post-processing. In bold
are the best-achieved results for the combination of method,
backbone, and post-processing. The T symbol points to the best
average results overall. The UUC numbers are respectively: 0
- impervious surfaces; 1 - building; 2 - high vegetation; 3 - low
vegetation; and 4 - car. The B column indicates which backbone
was used: “U" for U-net, “D" for DN-121, and “W" for WRN-50. 83

Table 7.1 The table presents AUROC results for the Vaihingen
dataset with all UUCs and the Average AUROC between all
UUCs. The results are ordered, in order, by BB column as
backbone, A column that indicates the use of the CBAM atten-
tion mechanism, and Average AUROC in descending order. The
UUCs numerical notation stands for 0 - impervious surfaces, 1
- building, 2 - low vegetation, 3 - high vegetation, and 4 - car.

In bold are highlighted the best AUROC for the combination of
Dataset, Backbone, and CBAM usage. 87

Table 7.2 AUROC results for the Potsdam dataset with all UUCs
and the Average AUROC between all UUCs. The results are
ordered, in order, by BB column as backbone, A column that
indicates the use of CBAM attention mechanism, and Average
AUROC in descending order. The UUCs numerical notation
stands for 0 - impervious surfaces, 1 - building, 2 - low vege-
tation, 3 - high vegetation, and 4 - car. In bold are highlighted
the best AUROC for the combination of Dataset, Backbone,
and CBAM usage. 88
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Table 7.3 In this table, the U-net is fixed and the A columns indicate

if the backbone uses the CBAM attention mechanism within the

U-net. In bold are the best results for each combination of the

dataset and the use of the CBAM attention mechanism within

the backbone. The UUCs number stands for 0 - impervious

surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation;

and 4 - car. The D column stands for the datasets with “V" for

the Vaihingen and "P" for the Potsdam dataset. 90
Table 7.4 The table shows the best results for the combination

of the method, the use of attention in the backbone, and the

dataset. The B column indicates the best performing backbone:

“U" for U-net, “D" for DN-121, and W for WRN-50. The UUCs

number stands for 0 - impervious surfaces; 1 - building; 2 -

low vegetation; 3 - high vegetation; and 4 - car. For the D

columns “V" stands for the Vaihingen and “P" for the Potsdam

dataset. The A column indicates the use of the CBAM attention

mechanism in the backbone. The best results are in bold for

each combination of the dataset and the use of the attention

mechanism within the backbone, and the best average result for

each dataset is in italic. 92
Table 7.5 A scoreboard of the OSS best AUROC results shows

which performed better in 3 distinct conditions: counting all

scenarios, counting only scenarios with AUROC greater than

0.6, and counting only scenarios with AUROC greater than 0.7. 93
Table 7.6 The table shows a scoreboard comparing the average

of FuSC and Single SPS configurations. The table presents

the score of each superpixel strategy that performed better

in 3 distinct conditions: counting all scenarios, counting only

scenarios with AUROC greater than 0.6, and counting only

scenarios with AUROC greater than 0.7. 94
Table 7.7 The table shows the AUROC results for the base open-

set prediction obtained by combining DN-121 with or with-

out attention to the method for the Vaihingen dataset. Each

backbone-method pair compares the performance of the base

open-set prediction with the best and the worst post-processing

configuration results. The UUCs number stands for 0 - impervi-

ous surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation;

and 4 - car. The A (attention) column indicates if the backbone

uses the CBAM attention mechanism as presented in section 5.1. 96
Table 7.8 The table shows the AUROC for the base open-set pre-

diction obtained by the combination of U-net with or with-

out attention to the method for the Vaihingen dataset. FEach

backbone-method pair compares the performance of the base

open-set prediction with the best and the worst post-processing

configuration results. The UUCs number stands for 0 - impervi-

ous surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation;

and 4 - car. The A (attention) column indicates if the backbone

uses the CBAM attention mechanism as presented in section 5.1. 97
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Table 7.9 The table shows the AUROC for the base open-set
prediction obtained by the combination of WRN-50 with or
without attention to the method for the Vaihingen dataset.
Each backbone-method pair compares the performance of the
base open-set prediction with the best and the worst post-
processing configuration results. The UUCs number stands for
0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 - high
vegetation; and 4 - car. The A (attention) column indicates if
the backbone uses the CBAM attention mechanism as presented
in section 5.1. 98

Table 7.10 The table shows the AUROC for the base open-set
prediction obtained by the combination of DN-121 with or
without attention to the method for the Potsdam dataset.
Each backbone-method pair compares the performance of the
base open-set prediction with the best and the worst post-
processing configuration results. The UUCs number stands for
0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 - high
vegetation; and 4 - car. The A (attention) column indicates if
the backbone uses the CBAM attention mechanism as presented
in section 5.1. 99

Table 7.11 The table shows the AUROC for the base open-set predic-
tion obtained by the combination of U-net with or without at-
tention to the method for the Potsdam dataset. Each backbone-
method pair compares the performance of the base open-set
prediction with the best and the worst post-processing config-
uration results. The UUCs number stands for 0 - impervious
surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation;
and 4 - car. The A (attention) column indicates if the backbone
uses the CBAM attention mechanism as presented in section 5.1.100

Table 7.12 The table shows the AUROC for the base open-set
prediction obtained by the combination of WRN-50 with or
without attention to the method for the Potsdam dataset.
Each backbone-method pair compares the performance of the
base open-set prediction with the best and the worst post-
processing configuration results. The UUCs number stands for
0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 - high
vegetation; and 4 - car. The A (attention) column indicates if
the backbone uses the CBAM attention mechanism as presented
in section 5.1. 101
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Table 7.13 The table compares the base open-set prediction obtained
by the method using DN-121 and DN-121+4+Att and presents
the resulting scenarios for the Vaihingen dataset. The AUROC
value of the base open-set prediction is compared to the average
AUROC for post-processing with a FuSC or a Single SPS
configuration. For each UUC the average AUROC values are
presented with the standard deviation of the results. The last
column shows the overall average between all UUCs. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car. 102
Table 7.14 The table compares the base open-set prediction obtained
by the method using U-net and U-net+Att and presents the
resulting scenarios for the Vaihingen dataset. The AUROC value
of the base open-set prediction is compared to the average
AUROC for post-processing with a FuSC or a Single SPS
configuration. For each UUC the average AUROC values are
presented with the standard deviation of the results. The last
column shows the overall average between all UUCs. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car. 103
Table 7.15 The table compares the base open-set prediction obtained
by the method using WRN-50 and WRN-50+Att and presents
the resulting scenarios for the Vaihingen dataset. The AUROC
value of the base open-set prediction is compared to the average
AUROC for post-processing with a FuSC or a Single SPS
configuration. For each UUC the average AUROC values are
presented with the standard deviation of the results. The last
column shows the overall average between all UUCs. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car. 104
Table 7.16 The table compares the base open-set prediction obtained
by the method using DN-121 and DN-121+4+Att and presents
the resulting scenarios for the Potsdam dataset. The AUROC
value of the base open-set prediction is compared to the average
AUROC for post-processing with a FuSC or a Single SPS
configuration. For each UUC the average AUROC values are
presented with the standard deviation of the results. The last
column shows the overall average between all UUCs. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car. 105
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Table 7.17 The table compares the base open-set prediction obtained
by the method using U-net and U-net+Att and presents the
resulting scenarios for the Potsdam dataset. The AUROC value
of the base open-set prediction is compared to the average
AUROC for post-processing with a FuSC or a Single SPS
configuration. For each UUC the average AUROC values are
presented with the standard deviation of the results. The last
column shows the overall average between all UUCs. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car.

Table 7.18 The table compares the base open-set prediction obtained
by the method using WRN-50 and WRN-50-+Att and presents
the resulting scenarios for the Potsdam dataset. The AUROC
value of the base open-set prediction is compared to the average
AUROC for post-processing with a FuSC or a Single SPS
configuration. For each UUC the average AUROC values are
presented with the standard deviation of the results. The last
column shows the overall average between all UUCs. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car.

Table B.1 The table shows the base open-set prediction quantitative
results obtained by combining using OpenGMM with DN-121
as the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.2 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS with DN-121 as
the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.3 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS++ with DN-121
as the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.4 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenGMM with DN-
121+ Att as the backbone for the Vaihingen dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.
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Table B.5 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenPCS with DN-
1214-Att as the backbone for the Vaihingen dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.6 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS++ with DN-
121+ Att as the backbone for the Vaihingen dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.7 The table shows the base open-set prediction quantitative
results obtained by combining using CoReSeg with U-net as
the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.8 The table shows the base open-set prediction quantitative
results obtained by combining using OpenGMM with U-net as
the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.9 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS with U-net as
the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.10 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS++ with U-net
as the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.
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Table B.11 The table shows the base open-set prediction quantitative
results obtained by combining using CoReSeg with U-net+Att
as the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.12 The table shows the base open-set prediction quantita-
tive results obtained by combining using CoReSeg+Att with
U-net+Att as the backbone for the Vaihingen dataset. The ta-
ble shows the performance of the base open-set prediction com-
pared to all tested post-processing configurations. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car.

Table B.13 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenGMM with U-
net+Att as the backbone for the Vaihingen dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.14 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS with U-net+Att
as the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.15 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenPCS++ with U-
net+Att as the backbone for the Vaihingen dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.16 The table shows the base open-set prediction quantitative
results obtained by combining using OpenGMM with WRN-50
as the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.
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Table B.17 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS with WRN-50
as the backbone for the Vaihingen dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.18 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS++ with WRN-
50 as the backbone for the Vaihingen dataset. The table shows
the performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.19 The table shows the base open-set prediction quantitative
results obtained by combining using OpenGMM with WRN-
50+Att as the backbone for the Vaihingen dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.20 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenPCS with WRN-
50+Att as the backbone for the Vaihingen dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.21 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS++ with WRN-
50+Att as the backbone for the Vaihingen dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.22 The table shows the base open-set prediction quantitative
results obtained by combining using OpenGMM with DN-121
as the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.
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Table B.23 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS with DN-121 as
the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.24 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS++ with DN-121
as the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.25 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenGMM with DN-
121+Att as the backbone for the Potsdam dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.26 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenPCS with DN-
121+Att as the backbone for the Potsdam dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.27 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS++ with DN-
121+ Att as the backbone for the Potsdam dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.28 The table shows the base open-set prediction quantitative
results obtained by combining using OpenGMM with U-net as
the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.
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Table B.29 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS with U-net as
the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.30 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS++ with U-net
as the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.31 The table shows the base open-set prediction quantita-
tive results obtained by combining using CoReSeg+Att with
U-net+Att as the backbone for the Potsdam dataset. The table
shows the performance of the base open-set prediction compared
to all tested post-processing configurations. The UUCs number
stands for 0 - impervious surfaces; 1 - building; 2 - low vegeta-
tion; 3 - high vegetation; and 4 - car.

Table B.32 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenGMM with U-
net+Att as the backbone for the Potsdam dataset. The table
shows the performance of the base open-set prediction com-
pared to all tested post-processing configurations. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car.

Table B.33 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS with U-net+Att
as the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.34 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenPCS++ with U-
net+Att as the backbone for the Potsdam dataset. The table
shows the performance of the base open-set prediction com-
pared to all tested post-processing configurations. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car.
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Table B.35 The table shows the base open-set prediction quantitative
results obtained by combining using OpenGMM with WRN-50
as the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.36 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS with WRN-50
as the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.37 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS with WRN-50
as the backbone for the Potsdam dataset. The table shows the
performance of the base open-set prediction compared to all
tested post-processing configurations. The UUCs number stands
for 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; and 4 - car.

Table B.38 The table shows the base open-set prediction quantitative
results obtained by combining using OpenGMM with WRN-
50+Att as the backbone for the Potsdam dataset. The table
shows the performance of the base open-set prediction com-
pared to all tested post-processing configurations. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car.

Table B.39 The table shows the base open-set prediction quantita-
tive results obtained by combining using OpenPCS with WRN-
50+Att as the backbone for the Potsdam dataset. The table
shows the performance of the base open-set prediction com-
pared to all tested post-processing configurations. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car.

Table B.40 The table shows the base open-set prediction quantitative
results obtained by combining using OpenPCS++ with WRN-
50+Att as the backbone for the Potsdam dataset. The table
shows the performance of the base open-set prediction com-
pared to all tested post-processing configurations. The UUCs
number stands for 0 - impervious surfaces; 1 - building; 2 - low
vegetation; 3 - high vegetation; and 4 - car.
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1
Introduction

With the evolution of the internet and the immense spread of ubiquitous
sensor networks in our society, we observe an increasing volume and dispersion
of data available for commercial or academic use. These data still lack methods
and studies that allow their application to the most diverse applications in
real-world scenarios.

Never before in human history has the term future shock, coined by Toffler
(1970), made so much sense while our society has never changed so quickly and
in such an interconnected way. This interconnection permeates everyone and
generates previously unthinkable volumes of data at an ever-increasing speed,
allowing data to be widely accessed and shaping a new data-based era (Bentley
et al., 2014).

The body of knowledge of image processing incorporated Machine Learn-
ing (ML) techniques in recent decades. Shallow image processing techniques
were the tools used to extract meaningful information for decision-makers un-
til the emergence of modern neural network architectures called deep neural
networks in the early 2010s. The so-called shallow techniques are handcrafted
for each use case and execute all process steps sequentially, relying on fea-
tures extracted by an expert that may not be representative and may lead the
algorithm to error.

The use of shallow techniques began for remote sensing images with the
acquisition of the first multi-spectral or high-spectral (HSI) remote sensing
images in the 1960s. The toy example in Figure 1.1presents a shallow image
processing pipeline used for decades.

Each step of the shallow pipeline can use many different techniques. As
examples, we can cite some well-known methods such as Principal Component
Analysis (PCA) (Jolliffe, 1990), Linear Discriminant Analysis (LDA) (Duda
et al., 1973), Discrete Wavelet Transforms (DWT) (Bruce et al., 2002), edge
detection techniques (Kumar et al., 2013), Histogram of Oriented Gradients
(HOG) (Zhu et al., 2006), etc. Many different algorithms became popular with
time in learning how to classify data: Decision Trees (Safavian and Landgrebe,
1991), Logistic Regression, support vector machine (SVM) (Cortes and Vapnik,
1995), Random Forests (Breiman, 2001), etc.
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input image inference / prediction

Feature Extraction

ﬁﬁ

Figure 1.1: Generic example of shallow image learning/processing pipeline.

A major revolution in computer vision research occurred in the last
decade, as the AlexNet proposed by Krizhevsky et al. (2012) made deep neural
networks (DNNs) the most used approach. DNNs have significantly improved
many aspects of visual recognition (Bendale and Boult, 2016), achieving
human-level performance for a multitude of tasks. Despite the many advances,
there are still difficult challenges when facing real-world problems (Sun et al.,
2020).

DNNs changed the shallow pipeline used for decades, replacing the
feature extraction and statistical inference steps with a DNN model capable
of doing both steps by itself, learning to optimize the desired task in an end-
to-end manner.

Traditional vision (RGB) and remote sensing tasks share classification
pipelines, but there are crucial differences among the images used. In addition
to the differences shown in Table 1.1, the nature of objects captured between
RGB and remote sensing images is not the same. The objects represented
have different geometry and relationships to their neighbors. There are also
physical differences in the environment and the used sensors, like the nature

of the noise, and the presence of clouds, among others.

1.1
Motivation

Closed-set semantic segmentation, classification, and recognition tasks
are limited due to the difficulty of collecting labeled or classified training
samples that exhaust all possible classes in the real world. The expected

scenario in real-world problems is Open with objects of classes not seen during
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. - HSI/
Characteristic RGB Multispectral SAR
number of . ..
channels tipically 3 up to thousands | tipically 4
spatial the same for
. vary for ,
resolution . images from the
. each input
of the images same sensor
captured ~ 400nm
wavelenght any range > 1cm
. and < 700nm

spectral width
number of
available many few few
sensors
number
of available many limited limited
training samples

di tri
ra 10m‘e Hie 8 bits up to 11 bits up to 16 bits
resolution

Table 1.1: Key differences among RGB, Hyperspectral (HST)/Multispectral,
and Synthetic Aperture Radar (SAR) images.

training that may be submitted to the model during testing or deployment
phases (Geng et al., 2020).

Incomplete knowledge of the world during training or the existence of
unknown samples during inference is a major unsolved challenge. So-called
Open Set Recognition (OSR) tasks have caught the interest of the research
community with multiple methods recently proposed for classification problems
(Bendale and Boult, 2016; Sun et al., 2020; Oza and Patel, 2019; Cui et al.,
2020; Guo et al., 2021). However, few publications have dealt with distinct
visual tasks, such as segmentation or object detection.

Semantic Segmentation is a classification problem that classifies every
pixel in an image with a semantic label (class) according to Minaee et al.
(2021). The Open version of the Semantic Segmentation problem is called
Open-set Semantic Segmentation (OSS). It refers to the set of algorithms that
address the identification of pixels of unknown or out-of-distribution (OOD)
classes at inference time while correctly classifying pixels of the known classes
learned in training (Oliveira et al., 2021). OSS is an inherently harder problem
due to its dense labeling nature compared to Open-set classification. It is
hard to learn open-set semantic segmentation precisely in real-world scenarios
(Brilhador et al., 2021). This fact may explain why there is still a gap in the
literature with only a handful of articles tackling the issue (Cui et al., 2020).
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1.2
Problem Definition

This work seeks to find ways to make semantic segmentation robust in
real-world scenarios where not all classes are known at training time but may
appear at test time.

All reported methods for OSS can be viewed as post-processing tech-
niques since they used pre-trained DNN backbones to extract features and train
another classifier, set a threshold, or replace the network tail. Post-processing
models allow DNN backbone replacement and can be readily adapted to new
datasets. As a disadvantage, all reported methods lack semantic consistency
and have many pixels misidentified as OOD pixels, especially at object bound-
aries.

In this work, we focus on finding methods that improve segmentation re-
sults and semantic consistency for semantic segmentation of open-set semantic
segmentation. Improving the semantic consistency of open-set semantic seg-
mentation allows the deployment in real-world scenarios. Models with little
semantic consistency deployed in real-world scenarios can lead to avoidable
errors and make their use unfeasible.

Bellow, the three research questions that guided the development of our

research.

RO;: Is it possible to develop a model capable of improving known bench-

marks for recognizing OOD pixels?

RQy: Could a deep end-to-end model improve semantic consistency while
improving known benchmarks for semantic segmentation on open-set scenar-

ios?

RQs: Isthere a way to improve quantitative results and semantic consistency
for existing OSS methods?

1.3
Approach

First, we executed a systematic mapping of the literature proposing a
taxonomy to organize and assist in defining the path for our research (Nunes
et al., 2022a). With the open-set segmentation publications identified and
mapped, we propose three distinct approaches to tackle the research questions.
First, based on Open Principal Component Scoring (OpenPCS) (Oliveira

et al., 2021) that uses PCA to compress the representation extracted from
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the closed-set backbones and uses the generated representation to detect the
OOD pixels. We propose a change in the framework replacing the PCA used by
OpenPCS with the Gaussian Mixture of Models (GMM) (Rasmussen, 2003).
GMM’s multimodal representation should be better suited for real-world pixels
modeling that may not conform to the unimodal representation produced by
PCA.

Inspired by the class conditioned auto-encoder for open-set recognition
(C2AE) method proposed by Oza and Patel (2019), we propose our second ap-
proach called Conditional Reconstruction for Open-set Semantic Segmentation
(CoReSeg) (Nunes et al., 2022b). CoReSeg is a fully convolutional end-to-end
method for OSS that uses two CNNs: one for traditional closed-set segmenta-
tion and the other for conditional image reconstruction.

The intuition behind CoReSeg is that the network learns rightfully to
reconstruct a pixel conditioned to its class. The higher the reconstruction error,
the higher the chance the class is unknown. The pixel is set as OOD if the
minimum reconstruction error among all class-conditioned reconstructions is
higher than a chosen threshold.

The first two proposed methods improved baseline quantitative results
and semantic consistency compared to baseline methods. However, as the
baseline methods, both proposed methods produced open-set segmentations
that erroneously classify pixels within larger, well-defined objects. As expected,
naturally low-confidence regions, such as the edges of objects, are more
commonly missegmented.

The third proposed approach is a superpixel post-processing strategy
to mitigate the lack of semantic consistency. The final segmentation quality
relies on selecting adequate hyperparameters for the superpixel segmentation
algorithm. The superpixel post-processing can improve the results, but a wrong
hyperparameter setting can lead to a worse post-processed result. We also
propose a novel superpixel generation procedure called Fusing Superpixels
for Semantic Consistency (FuSC) that makes post-processing hyperparameter

selection more reliable and robust while still improving results.

14
Contributions

This thesis presents five contributions: an OSS method called
OpenGMM, a novel end-to-end fully-convolutional method for OSS called
CoReSeg; a general superpixel post-processing technique; a novel superpixel
generation algorithm called FuSC; and a systematic mapping of the litera-

ture for open-set segmentation with the proposal of taxonomy to organize
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the related literature. The publications derived from this work are listed in
Appendix C.

The two OSS methods improved baseline quantitative results and se-
mantic consistency: OpenGMM is a modification of the framework OpenPCS
(Oliveira et al., 2021) replacing the used PCA by the GMM to represent the
compressed feature space, and CoReSeg is a novel end-to-end fully convolu-
tional method (Nunes et al., 2022b).

The general superpixel post-processing strategy improved the quantita-
tive results and the semantic consistency of all tested OSS. Post-processing
with FuSC as the superpixel generation algorithm improved the robustness
of hyperparameter selection while producing better, more stable, and reliable
results.

At last, we propose a taxonomy to organize and assist in better under-
standing the existing articles and trends in deep open-set segmentation (Nunes
et al., 2022a).

1.5
Document Organization

The remaining of this document is organized as follows: Chapter 2
presents the base theory supporting this work; Chapter 3 presents a systematic
mapping of the OSS literature proposing a taxonomy to understand and orga-
nize the work in the field detailing the methods most related to our proposals;
Chapter 4 describes the OSS methods and post-processing strategies propos-
als; Chapter 5 describes the experimental setup used to evaluate our proposal;
Chapter 6 presents an ablation study to define the best hyperparameters to
use for all final tests with brief discussion; Chapter 7 discuss and present the
achieved results; and Chapter 8 summarizes the main contributions of this

work and outlines directions for future work.
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2
Theoretical Background

2.1
Convolutional Neural Networks

Convolutional neural networks (CNNs) proposed by LeCun et al. (1989)
is a machine learning method to image recognition. CNNs became the domi-
nant method for visual tasks in the last decade since Krizhevsky et al. (2012)
proposed AlexNet for learning feature representations and improved CNNs
scalability. AlexNet uses larger convolutional kernels and has eight convolu-
tional layers before the final fully connected layer. Alexnet was a deeper neural
network than the first proposed CNNs. The Very Deep Convolutional Networks
(VGG) proposed by Simonyan and Zisserman (2014) increased the depth of
the network due to the use of smaller convolutional kernels (size 3, stride 2, and
padding equal to 1). VGG obtained better results using smaller kernels with
networks of 16-19 layers in-depth than with shallower networks with larger
convolutional kernels.

Training deep neural networks is more complex and computationally
expensive in deeper networks. Networks with more than 20 layers deep suffer
from the problem of vanishing gradients, when the backpropagated gradients
do not reach the first layers of the network, resulting in a loss of performance.
Residual Networks (ResNet) were proposed by He et al. (2016) and used
residual learning to tackle the degradation caused by the vanishing gradients.
The residual learning added shortcut connections (skip connections) that
simply perform the summation of the identity mapping of input to the
output of the stacked layers. The skip connections allow the gradient to
backpropagate properly not needing extra parameters or adding computational
complexity. Residual networks with more than 152 layers showed little benefit
or even degraded performance. WideResNet (WRN) proposed by Zagoruyko
and Komodakis (2016) is the most notorious architecture derived from the
standard ResNet and yielded relevant improvements. WRNs are lower in depth
but wider, the architecture increases the original residual block channels.

Densely Connected Convolutional Networks (DenseNet) Huang et al.

(2017) which uses as input for each layer the concatenation of the output fea-
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ture maps of all previous layers. The benefits of this strategy are: better feature
propagation, handles the problem of vanishing gradients better, encourages
feature reuse, and substantial reduces the number of needed parameters.

The state of art of CNNs architectures is not the scope of this work,
but many other architectures were proposed and it is worth mentioning:
EfficientNet Tan and Le (2019), EdgeNet Pradeep et al. (2018), Squeeze-
Excitation Roy et al. (2018), MobileNet Howard et al. (2017), DiceNet Mehta
et al. (2020) and HRNet Wang et al. (2020).

2.2
Semantic Segmentation

Semantic segmentation, also known as pixel-wise classification or dense
labeling, is the task of clustering neighboring pixels in images that belong to
the same semantic class as in Figure 2.1. Deep semantic segmentation (SS) is
when a DNN is used to learn and predict semantic segmentation. Many CNN
architectures were adapted to perform semantic segmentation after Alexnet
made DNN the epicenter of computer vision research. In the last decade, DNN
presented the best results and prevailed as the most used technique used to

semantic segmentation.

~

-

Prediction

UImperv. Surfaces M Building C1Low Vegetation B High Vegetation

Figure 2.1: An example showing an urban image and its closed-set semantic
segmentation.

2.2.1
Fully Convolutional Networks

CNN architectures like AlexNet (Krizhevsky et al., 2012), VGG Si-
monyan et al. (2013), ResNet He et al. (2016), DenseNet Huang et al. (2017)
can be adapted to Fully Convolutional Networks (FCNs) to perform dense pre-
diction as shown in Figure 2.2. Fully convolutional networks compute nonlinear

image filters, while a general DNN computes general nonlinear functions. The
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end-to-end dense learning is achieved by replacing the CNN’s fully connected
layers with convolutional layers and adding a spatial loss Long et al. (2015).
FCN training is equivalent to patchwise training, where each batch consists of
a patch for each pixel in each image in a set of images Long et al. (2015).

A crucial part of training DNNs is the use of an adequate loss function
allowing the model to learn correctly the desired task. According to Garcia-
Garcia et al. (2018), Cross Entropy loss is one of the most used losses for image

semantic segmentation and can be expressed by the Equation 2-1 below:
L(Y,§) = =Y log () — (1 =Y)log (1 —9), (2-1)

where Y represents the pixel-wise semantic map and ¢ the probabilities for
each class for a given sample. The Jadon (2020) survey can be consulted for

more information on losses used for semantic segmentation.

Encoder Interpolation
—— —
Latent
y =
3
20 s
i . @
< 5
‘ channels 5
\\‘ >

k channels

Figure 2.2: FCN is efficient in learning dense tasks like semantic segmentation.
The encoder receives the input and reduces the spatial dimensions increasing
the semantic dimensions with a higher number of channels in each layer, the
final layer of an Encoder is called the latent representation (z). To perform
semantic segmentation, the FCN compact the z layer into a k channel space
layer, with k equal to the number of known semantic classes, then interpolated
to the original input size. Figure based on Long et al. (2015).

The vanishing or exploding gradient problem (VEGP) is well documented
and a fundamental obstacle in training neural networks, especially for deep
neural networks that use gradient-based optimization techniques. The VEGP
occurs when the derivative of the loss in the Stochastic Gradient Descent
(SGD) update is very large or very small for a set of trainable parameters
according to Hanin (2018). VEGP occurs if the network weights are too small
to be relevant or too high to be precise.

While exploding gradients, in general, can be avoided using a small learn-

ing rate, a standard loss, scaling the target variables, and using normalization
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to configure the network, the vanishing gradient is trickier and needs some
extra structures to handle it.

Skip connections provide alternative paths allowing the backpropagation
of the gradients to mitigate the effects of the vanishing gradient problem. Skip
connections alter the flow of gradients, allowing backpropagated gradients to
reach the previous layers of the network without being processed by them
Drozdzal et al. (2016).

Besides that, skip connections share features from the contracting path
with the expanding path of a network to recover spatial/low-level pixel
information lost during the down-sampling process Drozdzal et al. (2016).
Skip connections also helps deal with diminishing feature reuse problems,
enforcing learning of distinct features in distinct parts of the network according
to Zagoruyko and Komodakis (2016).

2.2.2
Encoder-Decoder Architectures

An Encoder-decoder (EA) network can be defined as a symmetric net-
work divided into 2 main parts: the Encoder receives the input and, while re-
ducing the spatial dimensions, increases the semantic dimensions with a greater
number of channels in each layer of reduced sampling; the Decoder reverses
the processing made by the encoder, increasing the spatial dimensions, and de-
creasing the number of channels for each up-sampled layer. The symmetrical
design allows the direct use of skip connections between the encoder and the
decoder counterparts using the symmetrical feature vectors.

The Encoder side of the network uses standard convolutions to learn
kernels to process the image and to down-sample the input channels. The
symmetric Decoder side, in general, uses a transpose convolution to perform
the inverse operation of the Encoder and learn kernels to upsample the input
channels. The transpose convolution is a key development since the original
FCNs used the non-learnable bilinear interpolation to upsample and recover
the original spatial resolution of the image.

The U-net architecture proposed by Ronneberger et al. (2015) and shown
in Figure 2.3 is an Encoder-Decoder network. U-net uses the skip connections
to send to the decoder feature maps that allow the model to map higher-level
contextual /semantic information to spatial/lower-level pixel information.

Using a very similar architecture, SegNet proposed by Badrinarayanan
et al. (2017) usually uses the same 13 convolutional layers as VGG-16 Simonyan
and Zisserman (2014) as the encoder with a mirrored decoder. The main

difference to U-net is that instead of the feature maps, SegNet uses the
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Figure 2.3: The figure is based on the proposed U-net architecture by Ron-
neberger et al. (2015). @ represents the concatenation of copied feature maps
with the output of the transposed convolution of the last network layer. The
blue and green blocks are convolutional blocks of the Encoder and Decoder,
respectively. The width of the blue and green boxes represents the number of
channels, and the height represents the spatial dimension of the layer. Bigger
green boxes represent a greater number of input channels.

pooling indices and the activations of the indices as skip connections. Also,
an advantage of using the VGG-16 encoder is that it allows the use of pre-

trained weights for the desired task.

2.23
Semantic Consistency in Segmentation

Semantic consistency is rarely explicitly addressed in semantic segmen-
tation papers. In the following lines, we present an overview of the few existing
trends in deep semantic consistency.

Through an end-to-end trainable network that combines 2 branches, one
for edge detection and one for traditional semantic segmentation, Ji et al.
(2020) managed to improve the performance and the spatial consistency of
the resulting segmentation for PASCAL VOC 2012, PASCAL-Context and
Cityscapes datasets.

PixMatch, proposed by Melas-Kyriazi and Manrai (2021), uses heavy
augmentation and a loss term composed by the summation of two cross-entropy
terms. The first loss term is standard for SSeg, and the second is calculated
over a slightly perturbed image and mask. The new loss enforces the notion
of smoothness in the target domain to enhance intra-object segmentation
consistency.

Pixel-wise Contrast and Consistency Learning (PiCoCo), proposed by

Kang et al. (2021), seeks consistency in closed-set semantic segmentation using
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a joint loss function that is the summation of a supervised loss term, a contrast
loss term, and a consistency loss term. The supervised loss is a standard
semantic segmentation loss composed of cross-entropy and dice loss terms. The
contrastive loss uses a selection of positive and negative samples to enforce the
model to improve its generalization capabilities. The consistency loss consists
of a summation of cross-entropy and a dice loss of heavily augmented pairs of
input and labels to enforce semantic consistency and robustness to the learning
process.

Ratajczak et al. (2020) proposed a post-processing that combines unsu-
pervised colorization and deep edge superpixels (DES) to enhance the semantic
segmentation of panchromatic aerial images. The authors propose to assess if
applying a colorization algorithm could improve the strength of the pairwise
potentials used in a conditional random field (CRF') post-processing, this work
defined DES using the Watershed Hu et al. (2015) with the intermediate ac-
tivation maps obtained before each pooling layer to the output space of a
Holistically-Nested Edge Detection Network Xie and Tu (2015), they use the
generated superpixel segmentation (SPS) with the mean value for intensity
together with CRF to improve the final semantic consistency.

The use of supervoxels to improve segmentation consistency was used by
Zhang et al. (2014). A 3D-CNN was used to learn discriminative hierarchical
features from spatiotemporal volumes.

Our work introduced post-processing for OSS that uses a superpixel
segmentation algorithm to improve the semantic consistency of the resultant
open-set prediction. Post-processing the open-set segmentations produced
better results in all tested scenarios. We also proposed a new superpixel
segmentation generation algorithm called FuSC. FuSC benefits from merging
different input segmentations to produce a final one with better results in
most tested scenarios compared to the same post-processing using the single
algorithm SPS.

2.3
Auto-Encoder

Auto-encoders are also encoder-decoder networks, the goal of an autoen-
coder network is to learn a good representation of the input. Figure 2.4 shows
a general symmetric structure for an auto-encoder model. Auto-encoders can
be trained in a completely unsupervised fashion, learning data representations
that can be used to perform different tasks. Like PCA, auto-encoders are very
powerful in producing data representations in distinct dimensionality of the

input. The main difference between PCA and auto-encoders is the ability to
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handle nonlinearities. An auto-encoder produces similar results to PCA if there
is no non-linear activation in the model.

Figure 2.4 shows a general schematic for an auto-encoder where the input
is compressed to latent layer Z and then decompressed to its original size.
While each auto-encoder layer reduces the input size by a factor, the number
of feature maps increases. Usually, the leaned latent representation Z layer
have more channels/feature than the previous layers.

Auto-encoder models can learn to reconstruct the input data. The
encoder learns a compressed latent feature representation Z, and the decoder
reconstructs the input from Z Cheng et al. (2020). Auto-encoders typically
contract spatial dimensions while increasing the number of channels in return.
Auto-encoders usually minimize the L1, L2, or cross-entropy loss functions to

reconstruct data.

Encoder Latent Decoder
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Z

Figure 2.4: The figure shows a general schematic for an auto-encoder. The
encoder compresses the input data to the latent Z layer. The latent layer is
then up-scaled /decompressed to its original size.

Besides reconstruction, auto-encoders can: learn the denoising of an
image Gondara (2016); generate a sparse representation of the input Ng et al.
(2011); Makhzani and Frey (2013); Sun et al. (2018); for learning probability
distributions with variational auto-encoders Kingma and Welling (2019); do

image synthesis (Huang et al., 2018).
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2.4
Attention

The notion of attention used in machine learning extends the meaning
of the word attention as “a condition of readiness for such attention involving
especially a selective narrowing or focusing of consciousness and receptivity”
(Merriam-Webster, 2022). In this sense, the term “attention” should be under-
stood as the notion of a non-uniform spatial distribution of the representation
of relevant features for a specific task, together with the scalar representation
of their relative relevance as stated by Jetley et al. (2018).

More specifically, for this work, attention should be understood as a
trainable global (soft) attention mechanism (de Santana Correia and Colom-
bini, 2022). The usage of attention mechanisms allows the network to consider
the entire input and not only local sliding windows like CNNs or local temporal
inputs like in RNNs.

The soft attention mechanism assigns values between 0 and 1 to each
input element. The mechanism grades the focus on each tensor element
considering the global interdependence between the input and the target. The
use of sigmoid or softmax makes the entire attention mechanism deterministic
and differentiable. Soft attention mechanisms can be spatial or channel-wise.
Spatial attention increases the weights to focus on the most relevant areas of
the image. The channel attention mechanism increases the weights of the most
relevant feature maps (channels).

During the optimization process, the model learns where to focus and
prioritizes these locations over others. Attention is a set of techniques that
help a model to perceive relevant characteristics during the training of a DNN
Jetley et al. (2018). Attention takes into account the entire feature space: the
two-dimensional array for spatial and all channels for channel attention.

According to Chaudhari et al. (2021), attention became a determinant
tool to obtain better results for multiple natural language processing (NLP)
tasks. Using attention mechanisms improves DNN’s interpretability since it
identifies the most relevant parts of any input. Attention mechanisms also help
RNNSs to overcome performance degradation with the increase in the length of

input and the computational inefficiencies from the sequential processing.

2.4.1
Convolutional Block Attention Module

Convolutional block attention module (CBAM) proposed by Woo et al.
(2018) is a simple and effective attention module for CNNs. CBAM is a general
module and can integrate into any CNN architecture. CBAM sequentially
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learns attention maps using a spatial attention mechanism (SAM) and channel
attention mechanism (CAM). Figure 2.7 shows an overview of the attention

module, showing that CAM and SAM modules are serially applied.

Fi=CAM(F)® F

Ffinal = SAM(Fl) ® Fi
Equation 2-2 summarizes the functioning of CBAM presented in Fig-

(2-2)

ure 2.7, the multiplication of input tensor by the attention modules outputs
broadcast the attention results. In the equation, the symbol x denotes element-
wise multiplication, the F € RE*#*W denotes the input feature map, CAM and
SAM the attention modules as presented in Figures 2.5 and 2.6. CAM learns
a 1D channel attention map with the output € RE*'*! and SAM learns a 2D
spatial attention map with the output € R>H#*W,

Since each channel on a feature map can be seen as a feature detector,
the CAM module enhances the relevance of the most meaningful features of
the feature map. To perform the attention operation, CAM squeezes the input
feature map € ROV to ¢ RE*1*1 The squeezed feature map is used as
input for a two-layer multilayer perceptron (MLP) to learn which channels are
more relevant to the target. CAM uses the sum of average pooling and max

pooling as squeeze operations to compute the output. Equation 2-3 summarizes

the functioning of CAM, where o denotes the sigmoid function.

CAM = o(MLP(AvgPool(F)) + M LP(MaxPool(F))) (2-3)

While CAM learns which features are more relevant, SAM is the spatial
attention mechanism and learns to focus on the most relevant areas of the
input tensor. SAM uses average and max pool operations to squeeze the input
feature map along the channel axis generating two 2D maps. The 2D maps
are concatenated producing a tensor € R2*#*W that are submitted to a
convolution to compute the final attention map € R *W_ The Equation 2-4
shows the operations of SAM where f™7 denotes a convolution operation with

a kernel of size 7.
SAM = o(f™"([AvgPool(F)); M LP(MaxPool(F)]) (2-4)

2.5
Conditioning Deep Neural Networks

Conditioning in machine learning often refers to context-based processing
in the sense that some input is processed in the context of another piece
of information. The conditioning mechanism allows processing an image in

the context of a question to extract some information from the image and
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Figure 2.5: The figure depicts the workflow of the channel attention sub-
module. The & symbol represents the concatenation operation and the [
represents the sigmoid operation.
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Figure 2.6: The figure depicts how spatial attention works. The [ represents
the sigmoid operation.
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Figure 2.7: The figure shows an overview of CBAM with the refinement of
the input made by the attention sub-modules. The & symbol represents the
concatenation operation, [ represents the sigmoid operation, ® represents
the pixel-wise multiplication, and the ® symbol stands for a vector-tensor
multiplication.

Figure 2.8: Figure 2.7 is shown an overview of CBAM with the two sub-modules
showing how the input feature map is adaptively refined through the module
Woo et al. (2018). Figure 2.5 shows the sub-module for channel attention and
Figure 2.6 shows the sub-module that handles spatial attention.
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answer a question (Dumoulin et al., 2018). Another example will be given
in this work using an Encoder-Decoder network to learn how to reconstruct
images conditioned to their own semantic segmentation masks imposing that
the model learns better representations for each known class present in the
ground truth.

By conditioning a neural network, we adopt the notion of task represen-
tation. This notion of task representation allows changing the behavior of the
model due to the external information coded as the condition input according
to Dumoulin et al. (2018).

According to Dumoulin et al. (2018) there are three different ways of

conditioning a model:

1. concatenation-based - concatenate the condition with the input and force
the network to carry the conditioning information until it is needed. The
concatenation approach is parameter efficient since the conditioning is

only passed with the input;

2. biasing or additive - maps the condition tensor to a bias tensor and adds

the bias tensor to hidden layers. Parameter efficient and lightweight;

3. scaling or multiplicative - similar to biasing, the condition tensor maps
to a scaling tensor used to scale hidden layers with a dot product

(multiplication);

Biasing conditioning can be seen as a different implementation of
concatenation-based conditioning since we can decompose the concatenation
based on operations equivalent to the biasing conditioning. Both biasing and
scaling conditioning have interesting characteristics, scaling or multiplicative
interactions can learn relations among inputs, and the dot product allows to
amplify or identify similar inputs. The biasing or additive conditioning is more
appropriate to applications that are less dependent on both inputs simultane-
ously (Dumoulin et al., 2018).

Combining biasing and scaling conditioning has emerged as a more
suitable option to take advantage of the characteristics of both conditioning
strategies. Perez et al. (2018) proposed the Feature-wise Linear Modulation
(FiLM) by defining an affine operation (Equation 2-5) combining scaling and
biasing conditioning.

The FiLM is a general-purpose conditioning method for neural networks.
FiLLM layers are highly effective for visual reasoning, being capable of answering
image-related questions that require a high-level process. The FiLM can be

seen as a generalization of conditional normalization methods, replacing the
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parameters of the feature-wise affine transformation with a learned function
derived from some conditioning input.

Figure 2.9 shows the affine transformation expressed by Equation 2-5
applied to the network’s intermediate features. The applied transformation
guide FiLM to learn how to highlight or suppress feature maps based on

conditioning information.

FZLM(E,C | Yi,cs 51',0) = fyi,cF’i,c + Bi,c (2'5)
(2]
[
.0 o
o 1
S output vector ,B output vector
(&)

’Yi,c v size n 1,C ; size n F
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1
1
1
1
v

F FILM output

Figure 2.9: The figure shows the functioning of the FiLM layer applied to a
CNN. The ® symbol stands for the Hadamard product between the v and the
channels, and the @& symbol stands for the summation of the § vector with the
channels. The subscripts ¢ and ¢ stands for the ¢** feature map of i input.

2.6
Superpixel Segmentation

For this work, we consider a superpixel as a group of contiguous pixels in
a given image that is grouped according to some criterion of homogeneity. As
spatiality is crucial to any SPS, neighboring superpixels should be perceptually
different. Nevertheless, non-neighboring superpixels may have similar values
and shapes. All pixels inside a superpixel should assume as value some
representative measure like the mean or median value for each image band.

SPSs are an active research area, and many distinct methods were pro-
posed to generate superpixels from an image. As examples of well-known meth-
ods proposed in the last two decades, we can cite: Felzenszwalb (Felzenszwalb
and Huttenlocher, 2004), Quickshift (Vedaldi and Soatto, 2008), TurboPixels
(Levinshtein et al., 2009), ERS (Liu et al., 2011), SLIC (Achanta et al., 2012),
GSM (Morerio et al., 2014), Eikonal-based (Buyssens et al., 2014), SEEDS
(Bergh et al., 2012), LSC (Li and Chen, 2015), Waterpixels (Machairas et al.,
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2015), BASS (Rubio et al., 2016), SAS (Achanta et al., 2018), SH+FDAG
(Wang et al., 2019), content-based (Zhang et al., 2020) and SPFCM (Elkha-
teeb et al., 2021).

Among all possible choices of SPS algorithms to use in this work,
we choose three algorithms that have fundamentally different strategies to
generate the superpixels: SLIC (Achanta et al., 2012), Quickshift (Vedaldi and
Soatto, 2008) and Felzenszwalb (Felzenszwalb and Huttenlocher, 2004). In the

following paragraphs, we briefly present these three superpixel algorithms.

2.6.1
Simple Linear Iterative Clustering

The Simple linear iterative clustering (SLIC) algorithm proposed by
Achanta et al. (2012) groups pixels into perceptually meaningful contiguous
regions. The method adapts the K-means algorithm Lloyd (1982) to generate
the superpixels. Figure 2.10 shows examples of SLIC algorithm results.

Figure 2.10: An example of 2 images segmented using the SLIC algorithm.
Each presented image is segmented with three distinct approximate superpixel
sizes: 64, 256, and 1024 pixels. Figure extracted from Achanta et al. (2012).

The operation of the algorithm is simple. It starts with n centers
uniformly distributed in the image. Then, it adjusts the centers’ positions
to the local minimum of the gradient of pixel intensity to avoid centering
the superpixel in an edge. Finally, it iterates to every center, reallocating

the pixels in a fixed-size window to the closest center. Limiting the search
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area makes the algorithm faster while still producing good results. The SLIC
algorithm produces areas with great homogeneity as it is built on a K-means-
like approach, but it may neglect the natural edges of the image as a side
effect.

2.6.2
Quickshift

Quickshift is a fast mode-seeking algorithm proposed by Vedaldi and
Soatto (2008). In Quickshift, every pixel started as a superpixel then the closest
ones are put together within a defined radius distance. For each superpixel, if
a pixel is out of the radius limits, a new cluster is defined and populated by
the pixels inside the radius of the new centroid. Quickshift is a hierarchical
clustering algorithm, and the size of the clusters can be derived from the
generated tree of radius values. This method does not force the pixels to be
close to each other spatially, producing highly homogeneous superpixels of
different sizes and shapes. Figure 2.11 shows an example of an image segmented
using the QuickShift algorithm.

Figure 2.11: An example of an image segmented using the QuickShift algo-
rithm. The image is shown segmented with three distinct superpixel configu-
rations. Figure adapted from Vedaldi and Soatto (2008).

2.6.3
Felzenszwalb

Proposed by Felzenszwalb and Huttenlocher (2004), the algorithm is a
graph-based segmentation algorithm where each vertex represents a pixel, and
each selected edge has some measure of dissimilarity as its value. Every pixel
in the image graph-represented, but only some edges are added to the graph
according to a defined criterion (e.g. K-nearest neighbors) to guarantee the
intended complexity for the algorithm (O(m log n), where m is the number of
edges and n the number of vertices).

There are two presented strategies to select the edges, the first one uses
the notion of a grid and connects each pixel to the 8 closest ones in the grid.

The second strategy maps the image into a higher-level feature space and
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Figure 2.12: Three images segmented using Felzenszwalb algorithm. Figure
adapted from Felzenszwalb and Huttenlocher (2004).

connects the m closest points in this new space. For instance, a 5-dimensional
space is defined by the spatial position x and y, and the three colors of RGB.

The algorithm explores the same idea that Kruskal presented in Kruskal
(1956) used in their classical algorithm to find the minimum spanning tree
(MST) on a graph and selects the edges in a non-descending order to generate
the clusters. The clusters are generated using the intuition that the intracluster
dissimilarities are lower than the dissimilarities in the borders among clusters.

By construction, the Felzenszwalb algorithm generates clusters that vary
in shape and size, but strongly respect the borders of the natural objects in

the image.
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2.7
Open-set Recognition

Traditionally, datasets and methods are designed to deal with a static
closed world, knowing all possible categories during training. The same premise
applies to most DNNs developed to handle data from closed-sets (Bendale and
Boult, 2016).

Adapting recognition systems from controlled laboratory environments to
the real world presents many operational challenges. Any recognition system
exposed to real-world input needs to identify unseen categories while adding
additional categories with little to no downtime. An open-world system has
to identify new classes and add the newly identified classes to the learned
multiclass open-set recognition algorithm (Bendale and Boult, 2015).

The use of the term “recognition” and not “classification” is the first
question to be answered. Classifying something presupposes that all possible
classes in the universe are known. Recognizing something is a broader concept,
as it assumes that some classes are recognizable in a larger domain with
unrecognizable elements Scheirer et al. (2012).

The concept of openness introduced by Scheirer et al. (2012) measures the
knowledge available in training time from a test time perspective, explaining
how effective a model could be. Equation 2-6 shows the original formulation,
where “target classes” is the number of classes to be identified. This formulation
yields the percentage of openness, where 0 represents a completely closed

problem.

2 X training classes

(2-6)

openness = 1 — -
testing classes + target classes

To better understand the open universe Scheirer et al. (2014) defined three

recognition categories and Geng et al. (2020) expand adding one more:

1. known known classes (KKCs) - correctly labeled classes with data

available at training time;

2. known unknown classes (KUCs) - wrongly labeled classes or grouped

meaningful classes (i.e. background)

3. unknown known classes (UKCs) - classes present in data at training time
but not labeled;

4. unknown unknown classes (UUCs) - classes with no information on

training time.
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The survey presented by Geng et al. (2020) adopted a taxonomy for
OSR methods. Methods fit into two main categories: Discriminative or Gen-
erative. Discriminative methods fit into two sub-categories, traditional ma-
chine learning-based and DNN-based. Generative methods fit into instance
generation-based and non-instance generation-based. This work focus on DNN-
based discriminative methods.

According to Geng et al. (2020), the threshold-based approach is the
most common among discriminative OSR recognition models. In this type
of approach, the end result of recognition is computed by an empirically
established threshold that defines whether to be set as unknown or classified as
one of the KKCs. The need for modeling distribution tails makes EV'T widely
used in OSR methods. The optimal definition of the size of the tail or the value

of the threshold is still an open research question.
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3
Related Work

Understanding and organizing the literature on any area is a challenging
task that can help researchers to place their work among the many existing
methods. It may also be useful to provide an overview of the research area for
newcomers and the following works.

Considering the lack of a more structured organization for the OSR
and OSS literature, in Section 3.1, we perform a systematic mapping of the
literature and propose a taxonomy for deep learning open-set recognition
and segmentation, helping to organize the literature by classifying existing
methods according to their characteristics. Furthermore, the taxonomy allows
the identification of the emerging trends that may serve as the base for future
approaches and locate our proposal in the literature. To this extent, we focused
on deep learning-based methods only.

Based on the result of the systematic mapping, we explore in more depth
the articles that are most related to the developed methods in Section 3.2.

Section 3.3 concludes the chapter by discussing some of the most promis-
ing trends in OSR and OSS while also presenting possible future research di-

rections in the field and its relation with the methods developed in this work.

3.1
A Systematic Mapping of Open-set Segmentation in Visual Learning

This section presents a systematic literature review and the proposal of
novel taxonomy to organize OSR and OSS tasks together. To the extent of the
author’s knowledge, this is the first taxonomy proposed to tackle both tasks
simultaneously.

Since most open-set segmentation works derive from a recognition
method, a taxonomy for both tasks allows the identification of the most promis-
ing trends for segmentation and the ones not explored.

Section 3.1.1 presents OSR and OSS, and Section 3.1.2 introduces the
literature reviewing process and the proposed used taxonomy. Section 3.1.4
discusses the most representative OSR papers according to the proposed
taxonomy, while Section 3.1.5 reviews, analyzes, and categorizes the OSS

articles.


DBD
PUC-Rio - Certificação Digital Nº 1821003/CA


PUC-Rio- CertificagaoDigital N° 1821003/CA

Chapter 3. Related Work 25

o four
® two
® unk. (zero)

Training Deploy

Legend

® unclassified
o building

® roads

@ unk. (trees)

Training Deploy
3.1(b): OSS

Figure 3.1: Difference between training and deployment phases in OSR (a)
and OSS (b) scenarios. Red circle samples (for OSR) or red pixels (for OSS)

represent samples unknown in training.

3.1.1
Introduction

During the last decade, the automation of visual recognition tasks
has reached human-level standards in many domains (Huang et al., 2017;
Zagoruyko and Komodakis, 2016; Zhang et al., 2022; Tao et al., 2020). CNNs
(Krizhevsky et al., 2012) shifted the main limitation of visual recognition
from the lack of representation capability of shallow features to the amount
of labeled training data in a dataset/domain. Closed-set tasks in CNNs and
related network architectures such as classification, detection, or segmentation
assume that the training and testing label spaces are the same (Sun et al.,
2020). This scenario is not compatible with the majority of real-world problems
since the tasks are limited due to the difficulty of collecting labeled samples

that exhaust all possible classes.
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As stated by Scheirer et al. (2012), an open-set scenario happens when
unknown samples can appear in the prediction phase. In an open-set scenario,
not all possible classes are known during training. Applying this definition to
a classification problem, a new task called Open-set Recognition arises. The
same definition can also be used for each image pixel, extending the traditional
semantic segmentation problem to Open-set Segmentation. OSS refers to the
set of algorithms that identifies pixels of unknown or out-of-distribution classes
at inference time while correctly classifying pixels of known classes learned in
training (Oliveira et al., 2021). Figure 3.1 illustrates the OSR and OSS tasks.

The open-set tasks have caught the research community’s interest with
multiple recently proposed methods for OSR problems (Bendale and Boult,
2016; Sun et al., 2020; Oza and Patel, 2019; Cui et al., 2020; Guo et al., 2021).
However, only a few publications tackle the problem for different visual tasks,
such as segmentation or object detection (Hendrycks et al., 2018). OSS is an
inherently harder problem due to its dense labeling nature compared to Open-
set Recognition or Classification. Thus, in real-world scenarios, it is harder
to perform open-set semantic segmentation precisely (Brilhador et al., 2021).
The complexity of the problem may explain why there is still a gap in the
literature, with only a handful of articles tackling the issue (Cui et al., 2020).

3.1.2
Systematic Review Methodology

Aiming to systematize the choice and analysis of publications on OSS, we
followed the methodology from the literature of systematic mapping (Kitchen-
ham et al., 2009) as to how to conduct an organized review process.

We delimited this survey to focus on deep learning methods for OSS.
The used search terms were: 1) “segmentation”; 2) “(open-set OR open set
OR openset OR open-world OR open world)”; “(deep learning OR neural
network)”.

We selected three digital libraries/search engines to gather comprehensive
results: Google Scholar!, Scopus?, and Web of Science®. We defined only one
search string for Scopus and Web of Science since they allow for structured
search strings, as presented in Table 3.1. Table 3.1 also shows the two less
restrictive search strings defined for Google Scholar.

Besides the search results for OSS, multiple relevant OSR publications
were manually included in the mapping, as the majority of OSS methods were

adapted from the OSR literature. Section 3.1.4 presents an overview of the OSR

"https://scholar.google.com.br/
2https://www.scopus.com/search/form.uri?display=basic#basic
3https://www.webofscience.com/wos/woscc/basic-search
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Database Search Results
“segmentation” AND
(“open set” OR “open-set” OR “openset” OR

Web of Science “open world” OR “open-world”) AND 16
(“neural network” OR “deep learning”)
“segmentation” AND
“open set” OR “open-set” OR “openset” OR

Scopus S‘opzn world” OR ‘Popen—world”) ApND 36

(“neural network” OR “deep learning”)

Google Scholar open-set segmentation 33

Google Scholar open-world segmentation 27

Table 3.1: The table presents the used queries for each search engine and the
number of results returned.

literature according to the taxonomy presented in Section 3.1.3. We highlight
that the review of the OSR literature is intended to be representative rather
than extensive, considering that the number of papers on OSR is considerably
larger than those on OSS. We aimed to reach the representativity by including
the seminal articles for each category from the taxonomy with the ones found
during the OSS paper search. Thus, the selection of articles for the OSR task
is not necessarily fully complete, differently from the OSS review. Yet, the
revision of OSR papers is necessary, as we describe OSR methods to introduce
OSS afterward.

Since the total number of articles is relatively small, we considered the
union of all results and manually excluded the following types of publications:
surveys; thesis; dissertations; submitted and rejected articles; publications
describing frameworks used in competitions; articles in which the main task is
other than segmentation or recognition; and articles not focusing on images. We
refined the search of OSS methods to 71 publications after duplicate removal,
further reducing this number to 24 papers after applying the exclusion criteria,
with 15 being focused on OSS and 9 dealing with OSR tasks. Figure 3.2 shows
the distribution of the publications by year of publication and the growing
interest in OSR and OSS from the research community.

As only 24 publications resulted from the combined search and exclusion
criteria, all articles were read and further classified into the taxonomy. To
better understand research trends in OSS using deep neural networks, we

extracted the following complementary data from all final selected articles:

1. Does the article address the open-set scenario?
2. Which is the main task addressed by the article?

3. What kind of data is used?
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Figure 3.2: The evolution in the number of publications of the combined search
results is shown in grey and in yellow is the final number of selected articles.

4. Does the method use reconstruction?

5. Does the method use auxiliary data?

6. Does the method use a generative approach?

7. Does the method use any statistical modeling?

8. Does the method use the intermediate feature space?

9. Can easily adapt the method from the closed-set task or, in short, is the
method plug & play?

10. Does the method use extreme value theory (EVT) to model OOD classes?

We compiled the Table 3.2 from the proposed questions above. Each
column of the table answers one proposed question to map the architectural
choices made by the authors. We used the proposed questions to map the
emerging trends in literature, assisting in organizing the methods to define an
adequate taxonomy.

We further detail the most relevant individual articles presented in
Table 3.2 in Sections 3.1.4 and 3.1.5.

3.1.3
Taxonomy

Aiming to better understand the trends, the selection of articles guided us
to the following taxonomy, mapping three identified paradigms that organize

the families of methods for OSR and OSS commonly found in the literature:

1. Statistical modeling: statistics of the intermediary and output activations

from M models are used to define in- and out-of-distribution samples
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Figure 3.3: Figures present the schematics for the proposed taxonomy: statisti-
cal modeling (a); reconstruction-based (b); auxiliary data (c). In all figures, x
represents the input data, & the reconstructed input, M the closed-set model,
7 the threshold used to identify the OOD pixels, £ the encoder and D the
decoder of the reconstruction auto-encoder, and beta a discriminator model.

(Bendale and Boult, 2016; Ge et al., 2017; Hendrycks et al., 2018; Sun
et al., 2020; da Silva et al., 2020; Cui et al., 2020; Vendramini et al., 2021;
Oliveira et al., 2021; Martinez et al., 2021; Yan et al., 2021; Cen et al.,
2021; Grei¢ et al., 2021; Chan et al., 2021; Gawlikowski et al., 2022;
Hong et al., 2022; Dong et al., 2022), as illustrated in Figure 3.3(a).
This is a broader category than the next two, and as such, it is possible
to further split it into four overlapping subdivisions according to the
characteristics of the statistical modeling - which activation layers are
used, the employment of EVT, the use of activations to represent
known and unknown classes, and the output of an anomaly (entropy

or probability) score;

2. Reconstruction-based: image reconstruction loss £ is used to model or
classify OOD samples (Yoshihashi et al., 2019; Oza and Patel, 2019; Sun
et al., 2020; Nunes et al., 2022b), as shown in Figure 3.3(b). This category
is split into two subdivisions - Conditional or not. The conditional sub-
division is characterized by the employment of class conditioning as
a means of reconstructing the input image according to the learned
condition. Conditional strategy tends to generate worst reconstructions

for the OOD classes due to unknown adequate conditioning;
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Conditional (Oza and Patel, 2019; Nunes et al., 2022b)

(Hendrycks et al., 2018; Kong and Ramanan, 2021)

(Ge et al., 2017; Grcié et al., 2020, 2021)
(Kong and Ramanan, 2021; Bevandié¢ et al., 2022)

(Cui et al., 2020; Yan et al., 2021; Gawlikowski et al., 2022)
(da Silva et al., 2020; Chan et al., 2021; Hong et al., 2022)

(Sun et al., 2020; Oliveira et al., 2021; Martinez et al., 2021)
(Vendramini et al., 2021; Cen et al., 2021; Dong et al., 2022)

(Bendale and Boult, 2016; Ge et al., 2017; Oza and Patel, 2019)
(da Silva et al., 2020; Oliveira et al., 2021; Martinez et al., 2021)

(Sun et al., 2020; Grceié et al., 2021; Martinez et al., 2021)
(Oliveira et al., 2021; Vendramini et al., 2021)

(Dong et al., 2022; Cen et al., 2021)

(Grcié et al., 2021; Chan et al., 2021)
(Hong et al., 2022)

Figure 3.4: Classification of the selected publications under the proposed cate-
gories of the taxonomy presented in Section 3.1.2. Each category can be further
divided into more refined groups according to the methods’ characteristics.
Each method may fall under more than one group, as they are not mutually

exclusive.

3. Auziliary data: a discriminative model [ trained with KKC and

KUC samples can discriminate between known and unknown samples,
(Hendrycks et al., 2018; Greié et al., 2020, 2021; Kong and Ramanan,
2021; Bevandié¢ et al., 2022; Grcié¢ et al., 2022). The pipeline in Fig-

ure 3.3(c) shows a closed-set model M coupled with a discriminative

model B used to identify UUC samples. This category can be split into

two subdivisions - Synthetic or not. The Synthetic methods use some

type of generative strategy to generate OOD samples, helping to better

model in and out-of-distribution samples.

Graphical visualization of all selected papers under the respective cate-

gory is shown in Figure 3.4.
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Ref
Bendale and Boult (2016)
Ge et al. (2017)
Hendrycks et al. (2018)
Yoshihashi et al. (2019)
Oza and Patel (2019)
Sun et al. (2020)
Vendramini et al. (2021)
Bharadwaj et al. (2022)
Gawlikowski et al. (2022)

da Silva et al. (2020)
Grci¢ et al. (2020)
Cui et al. (2020)
Oliveira et al. (2021)
Martinez et al. (2021)
Yan et al. (2021)
Cen et al. (2021)
Grcic et al. (2021)
Chan et al. (2021)
Kong and Ramanan (2021)
Nunes et al. (2022b)
Bevandi¢ et al. (2022)
Grci¢ et al. (2022)
Hong et al. (2022)
Dong et al. (2022)
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Table 3.2: The table shows systematic review results for OSS and the selected
articles of OSR. Data is ordered by task (column T) and by publish year.
Columns stand for, respectively: T - main task tackled (S - segmentation, R -
recognition); D - data type (I - 2D image, RS - remote sensing image); R - if
the model uses image reconstruction somehow; A - if it uses auxiliary data; G
- if it uses generative modeling; S - if it uses any statistical modeling; F - if it
uses the intermediate feature space to model open-set distributions; P - if the
model can be used in a plug & play fashion; E - if the method uses EVT to
model open-set distributions; and SE - the source of the article (M - manually
included; W - Web of Science; S - Scopus; and G - Google Scholar).
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3.1.4
Open-set Recognition

A comprehensive view of the OSR was presented in Section 2.7 using the
taxonomy presented by Geng et al. (2020). This section presents the seminal
manually chosen articles for each category of the unified taxonomy for OSS and
OSR. They represent well the examples of methods that fall upon the proposed
categories and can be considered the base of more recent approaches.

Deep statistical models for OSR can operate either solely on the output
activations of a model M (Bendale and Boult, 2016; Gawlikowski et al., 2022;
Bharadwaj et al., 2022) or also consider the intermediary feature representa-
tions of a closed-set classification network (Vendramini et al., 2021; Sun et al.,
2020), as shown in Figure 3.3(a). An important subset of this OSR paradigm
specializes in using EVT for detecting OOD samples. An example of this case
is the traditional OpenMax algorithm (Bendale and Boult, 2016), which adds
an “unknown” output class and estimates the probability of the input images
to each of the C' + 1 classes, where C' is the number of known categories. Ex-
treme value theory is a robust theoretical framework to work with long-tailed
distributions and anomaly detection, but is usually limited to working directly
on logits, not including intermediate feature representations. Vendramini et al.
(2021) showed how simple generative models (i.e. principal component analysis
or Gaussian mixtures) surpassed the performance of OpenMax considerably in
multiple traditional OSR scenarios by introducing information from the middle
layers of a CNN M.

Following a rather distinct paradigm, reconstruction-based strategies
(Figure 3.3(b)) (Oza and Patel, 2019; Yoshihashi et al., 2019; Sun et al., 2020)
leverage reconstruction error from auto-encoding networks (e.g. auto-encoders
and their variants) in order to delineate the boundary between known and un-
known samples. These strategies rely on the reconstruction error from known
classes being smaller than reconstruction errors from unknown classes, since
the training is only with known samples. Multiple articles (Oza and Patel,
2019; Yoshihashi et al., 2019) repurpose the closed-set classification encoder
& and attach a trainable decoder D to try to reconstruct the input image for
the known classes. C2AE (Oza and Patel, 2019) exemplify the reconstruction
paradigm for OSR quite well by merging a closed-set classification encoder £
pre-trained on the known classes with an upsampling decoder D for reconstruc-
tion. £ works both to classify among KKCs and to compress the representation
of the input samples into an embedding that can be reverted to an approx-
imation of the input space by D. In this strategy, wrongly labeled samples

are purposely fed to the network to enforce that it is able to only reconstruct
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samples correctly conditioned to the input label.

Conditional Gaussian Distribution Learning (CGDL) Sun et al. (2020)
is a variation of the traditional reconstruction-based pipeline that couples
the reconstruction loss with a Kullback Leibler (KL) constraint on network
activations — effectively working as a cascaded VAE (Kingma and Welling,
2013). The KL divergence is used during the training phase in order to
enforce simpler gaussian bottleneck embeddings before the reconstruction.
CGDL is framed as statistical and reconstruction-based due to the use of both
reconstruction loss and the KL divergence.

At last, the third OSR strategy uses known unknown samples as aux-
iliary data to ensure that the model learns to differentiate between known x
and unknown samples x_,,. This OSR paradigm leverages a known set of un-
known samples — henceforth known as the support set — to transform the usu-
ally unsupervised generative modeling of OSR into a supervised discriminative
process. For instance, G-OpenMax (Ge et al., 2017) employs a Generative Ad-
versarial Network (GAN) B trained on OOD data to learn how to discriminate
the known classes (classified through the closed-set branch M) from synthetic
samples. In the same direction, the Outlier Exposure (Hendrycks et al., 2018)
model uses different datasets as OOD samples in the open vs. closed branch B
to learn how to discriminate the known distribution from others. Figure 3.3(c)

shows an example of this class of methods.

3.1.5
Open-set Semantic Segmentation

Statistical Modeling is the most common background structure used by OSS
methods varying the usage from method to method. PCA, GMM, entropy, or
probability produce anomaly scores from intermediate features or final layers
of model M to distinguish and characterize OOD via threshold 7 (Oliveira
et al., 2021; Martinez et al., 2021; Hong et al., 2022; Chan et al., 2021; Cui
et al., 2020; Grcié et al., 2021, 2022). OpenPCS (Oliveira et al., 2021) and
OpenPCS++ (Martinez et al., 2021) use PCA to reduce the dimensionality,
generating a representation of the stacked intermediate features and the final
layers. A threshold is employed in the resulting log-likelihood to identify
OOD pixels. An advantage of both OpenPCS and OpenPCS++ is the “plug
& play” characteristic, which allows a fast adaptation of the method and
the use in either new datasets or different closed-set backbones. Another
related work proposed by Cui et al. (2020) applied a statistical test to the
produced entropy-uncertainty map to determine if any area is unknown. Other

representational strategies employed are Metric Learning and Prototyping, as
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in Cen et al. (2021) and Dong et al. (2022), using the calculated distance
between representations and each sample to define which pixels are OOD.
Methods proposed by da Silva et al. (2020); Oliveira et al. (2021) and Martinez
et al. (2021) use EVT to model the final score or loss distribution and to
separate OOD objects from the known objects. A different approach uses
probability sampling to balance sample selection and improve the learning
for the method proposed by Yan et al. (2021).

Reconstruction-based strategies are employed in only one method in OSS.
In general, reconstruction-based methods use the reconstruction error £ to
identify OOD pixels. The only reconstruction method (Nunes et al., 2022b)
found in our search uses conditional reconstruction to identify OOD pixels.
In training, the method learns to reconstruct pixels conditioned to their class,
and in testing, all pixels are conditioned to all known classes. The ones from
unknown samples tend to present higher reconstruction loss values, thus being
set as OOD by a threshold 7.

Auxiliary data had three different usages mapped in this study. The first
uses synthetic images (Kong and Ramanan, 2021; Grcié et al., 2020, 2021).
The method proposed by Greié et al. (2020) employs synthetic negative patches
added to images that simultaneously achieve uniform discriminative prediction
and high inlier likelihood. Also, the Jensen-Shannon divergence was employed
in both training and inference instead of the Kullback—Leibler (KL) divergence.
The Jensen-Shannon divergence mildly penalizes high confidence predictions
in comparison to KL-divergence. The OpenGAN method (Kong and Ramanan,
2021) learns a robust open-vs-closed discriminator B that serves as open-set
likelihood. B is trained with fake (synthetic) data from a generator and real
open training examples as an outlier exposure strategy. As the GAN objective
is not a realistic reconstruction, both generator and discriminator B use the
features of the closed-set model M, which enables readily modifying closed-set
systems for open-set recognition.

The combination of synthetic data and OE together is the second mapped
usage of auxiliary data. We highlight that OpenGAN was the only work found
that used synthetic data and OE together to enhance the discriminative ability
of the model.

Finally, the third mapped usage is a strategy that randomly replaces a
small crop of the input image with some OOD mini-patch (Greié¢ et al., 2020,
2021; Bevandi¢ et al., 2022). In Bevandié¢ et al. (2022), the mini-patch is a
random crop of a real image of the same size but with a different distribution.
In Greié et al. (2020, 2021), the mini-patch is synthetic. For this sort of
approach to work, the ground truths must be equally modified including the
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unknown class to the added mini-patch area. The model trains to differentiate

in-distribution and out-of-distribution and to correctly identify OOD pixels.

3.2
Strongly Related Works

The methods presented in this section were selected among the results

of the systematic review in Section 3.1.

3.2.1
OpenPixel

The OpenPixel method proposed by da Silva et al. (2020) was the first
CNN for OSS. It uses a patch-wise strategy with a patch or context window of
55x55 pixels to classify the central pixel. The CNN trains to classify each patch
by iterating over each image’s pixel. If the probability given by the softmax
layer is below a threshold, the pixel is set as unknown.

Morph-OpenPixel was proposed by adding a morphological filter at the
end of OpenPixel’s network. The morphological filter is a post-processing
technique to delineate object boundaries more precisely. Figure 3.5 shows
the representation of OpenPixel and the morphological post-processing. The
identified unknown pixels are subject to the morphological filter to determine if
a pixel belongs to a border of an object. The class of the pixel is set to the same
class as most of its neighbors whenever the pixel belongs to a boundary. The
obtained results show that Morph-OpenPixel improved the overall accuracy
and Kappa.

This strategy has the major disadvantage of creating a patch for each
pixel, which makes the entire process extremely expensive and unfeasible in

real-world scenarios.

Fully
connected
Encoder  Latent MLP

erosion
operation

=]

55x55 pixels patch

[OTImp. Surf. BBuilding [Low Veg. [EHigh Veg. [ICar EUnknown

Figure 3.5: OpenPixel and Morph-OpenPixel architectures. The OpenPixel
representation goes up to the semantic map. Morph-OpenPixel includes a
morphological filter for post-processing the OpenPixel output.
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3.2.2
Open Fully Convolutional Network

Open Fully Convolutional Network (OpenFCN) proposed by Oliveira
et al. (2021) was the first fully convolutional model proposed to OSS. OpenFCN
extends traditional FCN-based architectures for the OSS task. Traditional
FCN-based models usually consist of a CNN backbone with inference layers
replaced by a spatial expansion strategy and more convolutions. OpenFCN is
first trained as closed-set semantic segmentation, using the SoftMax layer to
compute prior probabilities for the known classes.

To compute posterior prediction, OpenFCN uses the same protocol as
OpenMax Bendale and Boult (2016), which relaxes the requirement that the
sum of the prediction probabilities for KKCs equals 1. An additional class is
added to the posterior prediction, and the OpenMax function reweights the
SoftMax predictions to account for the misclassification probability. During
the validation, using the validation data, a Weibull distribution is calculated
for each KKC from the correctly classified pixels. A threshold is defined from
the quantiles of the Cumulative Distribution Function (CDF) for the Weibull
distributions. All pixels below the threshold are unknown. The final OpenFCN
segmentation had boundary issues among adjacent objects and, in many cases

misclassified pixels within these areas.

3.2.3
Open Principal Component Scoring

OpenPCS works similarly to CGDL (Sun et al., 2020) with three key
differences: uses PCA instead of a VAE; training is purely supervised, and the
closed-set semantic segmentation is detached from the fitting of the Gaussians
that occurs only in the validation phase.

OpenPCS combines feature maps from earlier layers with feature maps
from the latest layers of the model, merging low and high-semantic-level
information. According to Shwartz-Ziv and Tishby (2017), a supervised DNN
can be seen as a Markov chain that gradually transforms the input space into
the output space. By adding earlier intermediate activation layers to fit the
Gaussian, OpenPCS uses activations with high spatial level information as they
approach the output space and high semantic information as the activations
approach the input space.

As can be seen in Figure 3.6, to combine the intermediate activation
layers they must be upsampled to match the spatial resolution of the output
prediction represented as the 1 function before the concatenation of the layers.

The concatenation of the intermediate layers can produce a high-dimensional
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Figure 3.6: During training both OpenFCN and OpenPCS behave like a
traditional closed-set FCN for semantic segmentation for the KKCs. The
closed-set FCN is shown in the middle of the figure. During validation,
OpenFCN computes OpenMax and the Weibull distributions. During testing,
the probabilities for OSS are thresholded to predict the unknown pixels.
OpenPCS concatenates the activation maps (in this example a(#*), a(*+) and
alrs)). a3) a4 are scaled up to the dimensions of a!*3) to produce a column
vector for each predicted KKC pixel. OpenPCS reduces the concatenated
high-dimensional feature space to a low-dimensional (a(F°*)) space using the
Principal Components. For each KKC, a multivariate Gaussian is fitted, and
an array of log-likelihoods is thresholded to identify the OOD pixels. Adapted
from Oliveira et al. (2021).
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feature space since modern FCNs may have up to thousands of channels for
each layer. OpenPCS compute a low dimensional feature space with PCA
before fitting a Generative model G to recognize OOD pixels.
OpenPCS-based approaches have some key advantages: it is simple
to adapt new FCN backbones and datasets since the closed-set training
is detached from the OOD prediction; PCA can be accelerated through
parallelization to compute the log-likelihood scoring; PCA dimensionality
reduction is highly effective in identifying the most representative activation
channels to compute the scoring function to detect UUCs.
OpenPCS++ proposed by Martinez et al. (2021) is a variation of OpenPCS
that uses the statistical whitening transform as a feature normalization for
better stability in known class likelihood scoring space. The transformation
that enforces data to have an identity covariance matrix is known as the
statistical whitening transform. This transformation makes the dimensions
statistically independent, and the variance of each dimension equals one. This
operation equals the weights of the dimensions of the scoring space used to
detect the OOD pixels.
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3.2.4
Class Conditioned Auto-Encoder for Open-set Recognition

The method called C2AE proposed by Oza and Patel (2019) divides the
OSR task into sub-tasks: closed-set classification, open-set training, and open-
set testing. Figure 3.9 shows a simplified schema of C2AE based on the original
paper.

The Closed-set classification uses a shallow classifier on top of an Encoder
(F') to extract features and perform on the MNIST dataset. After the closed-
set training, (F') weights are frozen and used in other parts of the method. The
closed-set encoder and classifier are trained with the traditional Cross Entropy
loss.

Open-set training shown in Figure 3.7 is split into two parts: conditional
decoder training; and EVT modeling of the reconstruction errors. For the con-
ditional decoder training, the frozen encoder F' produces a latent representation
of the inputs. The latent representation is then conditioned using FiLM (Perez
et al., 2018) and feeds the Decoder G. The G reconstruction is expected to be
perfect if conditioned to the correct class.

The input is conditioned to its match class and to non-match class.
With this training strategy, G learns to output a poor reconstruction when
conditioned to a non-matching class and a good/perfect reconstruction when
conditioned to the match class, emulating an open-set scenario. EVT models
the match and non-match class reconstruction errors. The optimal operating
threshold lies between the match and the non-match distributions and mini-
mizes the probability of errors for that given model.

Open-set testing shown in Figure 3.8 condition the input to all KKC classes
and compute the reconstruction errors. If the minimum reconstruction error
is below the previously calculated threshold, the shallow classifier output is
returned. If the minimum reconstruction error is greater than the threshold,

the returned class is unknown.

3.3
Discussion and Literature Trends

In general, OSS methods are based on an OSR counterpart. Hence,
our proposed taxonomy works for both tasks since the fields share similar
strategies. Reconstruction-based methods might be an ongoing trend for OSS
since some of the more robust methods in OSR rely on reconstruction (Oza and
Patel, 2019; Yoshihashi et al., 2019; Sun et al., 2020). Our systematic review
only found one method proposed in this thesis for OSS that uses reconstruction

(Nunes et al., 2022b), which means that this type of strategy is still in its earlier
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Figure 3.8: Simplified testing schematics

Figure 3.9: The figure shows the C2AE schema divided into three phases.
1) Closed-set pre-training follows the traditional closed-set training with
an Encoder (F) and a shallow classifier. 2) Open-set training shown in
Figure 3.7, uses the pre-trained closed-set encoder F' with its weights frozen.
F is used to train a decoder to reconstruct the input conditioned to the label.
Reconstructions conditioned to the correct class yield a better reconstruction
(smaller error value) than reconstructions conditioned to the wrong class
(higher error value). In the end, EVT models reconstruction errors defining
the operating threshold. 3) Open-set testing shown in Figure 3.8, each
input is conditioned to every KKC getting the minimum error reconstruction.
The model yields the classification of the shallow classifier if the minimum
reconstruction error is below the threshold, otherwise, it is unknown.
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steps and showed strong results compared to the other baseline OSS methods.

A major gap found in the literature that seems relevant for OSS is the
lack of methods to improve the semantic consistency of the segmentation, par-
ticularly as boundaries across objects from distinct classes tend to present
larger segmentation errors. Many open-set strategies employ some confidence
or anomaly score to identify OOD pixels. Thus, post-processing schemes capa-
ble of mitigating the lack of confidence in border regions between different ob-
jects may improve open-set segmentation prediction results. In this direction,
techniques like visual attention modules, CRFs, and superpixel post-processing
are promising alternatives to be explored in future works. Another approach
proposed in this work tackles this gap and uses superpixel post-processing to
improve semantic consistency for OSS.

Finally, zero-shot and few-shot tasks overlap open-set tasks since the
knowledge in these scenarios is inherently incomplete during training, and the
method may need to handle samples of unknown classes during the deployment
phase, possibly even using some online learning strategy. Developments in the
literature of OSR/OSS and zero-/few-shot learning (Cen et al., 2021; Zhou
et al., 2021; Saito et al., 2021) seem to walk towards each other, possibly
resulting in future deep Open World (Bendale and Boult, 2015) approaches.
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4
Proposed Methods

In this chapter, the three proposed approaches are presented in detail.
The Section 4.1 presents Open Gaussian Mixture of Models (OpenGMM) as an
extension of the OpenPCS method proposed by Oliveira et al. (2021), which
was the first model developed; The Section 4.2 presents the second model
developed called Conditional Reconstruction for Open-set Semantic Segmen-
tation (CoReSeg); and Section 4.3 presents the post-processing developed and
the novel superpixel generation method called Fusing Superpixels for Semantic
Consistency (FuSC) both applicable to any OSS method.

4.1
Open Gaussian Mixture of Models

OpenGMM builds upon the previously proposed OpenPCS (Oliveira
et al., 2021) method that uses PCA to compress the representation extracted
from the backbones and uses the generated representation to do the OOD
pixel detection. OpenGMM replaces PCA with GMM (Rasmussen, 2003).
GMM’s multimodal representation should be better suited for real-world pixel
modeling that may not conform to unimodal representations.

Like OpenPCS, OpenGMM uses intermediate feature maps together with
the last layer activation maps. Combining the activations from the earlier layers
with the latter layers produces a tensor that fuses low and high-semantic-
level information. The concatenated tensor may have hundreds or thousands
of channels, which is known to be redundant (Sun et al., 2020; Huang et al.,
2017). OpenGMM fits GMM rather than PCA like OpenPCS to deal with the
concatenated tensor size and redundancy of activations. The GMM is applied
to model each closed-set KKC distribution, generating as many models as
KKCs. Each GMM model generates a score tensor with the log-likelihood
values for all pixels and generates a final score tensor combining all GMM
scores with the closed-set prediction. The produced final score tensor is used
to set all pixels below the threshold as unknown or OOD.

The OpenPCS framework proposed by Oliveira et al. (2021) and, as an
extension, OpenGMM allow for multiple closed-set backbones. We adopt three
backbones for OpenGMM and OpenPCS: DN-121 (Huang et al., 2017), WRN-
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Figure 4.1: The figure shows an example of how different objects can be rep-
resented by distinct data distributions. Due to the multimodal representation
capability, GMM is better suited for representing real-world data than Open-
PCS (Oliveira et al., 2021).

50 (Zagoruyko and Komodakis, 2016) and U-net (Ronneberger et al., 2015).
We also used the same three backbones with CBAM layers as described in
Section 5.1.

Readers should notice that adapting any closed-set semantic segmenta-
tion network to the OpenGMM and OpenPCS frameworks is relatively quick
and simple to implement and deploy, without requiring retraining or additional
layers to be trained. This promptness contrast to other existing OSR/OSS
methods (Hendrycks et al., 2018; Yoshihashi et al., 2019; Sun et al., 2020) or
even CoReSeg also proposed in this work (Nunes et al., 2022b) that need to
be retrained.

The plug-and-play characteristic of methods such as OpenPCS and
OpenGMM is a great advantage when considering the problem of adapting

the solution to real-world applications and novel domains.
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4.2
Conditional Reconstruction for Open-set Semantic Segmentation

CoReSeg employs a pre-trained closed-set neural network to generate a
latent representation of the input image. This latent representation is used to
perform a closed-set prediction and as input for the reconstruction decoder.
This decoder also receives conditioning information, whose objective is to guide
the reconstruction of the input image from its latent features conditioned to the
desired class (or classes). An overview of this process is illustrated in Figure 4.2.

Our method is inspired by some design choices proposed by Oza and
Patel (2019), wherein the conditioning concerns the entire image, while for
CoReSeg the conditioning is performed in a pixel-wise manner. The main idea
of the proposed method is that objects from known classes will be better
reconstructed when their pixels are conditioned to the correct class, while
unknown objects will present poor reconstructions since there is no correct
conditioning to these pixels.

The following subsections will detail the architecture choices, the tried
variations, the two sequential training steps, and the testing or deployment

procedure.

4.2.1
Reconstruction

CoReSeg uses an auto-encoder to reconstruct the input image condi-
tioned to its mask. Auto-encoders learn how to reconstruct images, typically
minimizing some measure of reconstruction error as a loss. As used for anomaly
detection, CoReSeg uses reconstruction errors to identify pixels of unknown
classes.

Auto-encoders detailed in Section 2.3 typically use a bottleneck archi-
tecture that contracts the spatial dimension while increasing the number of
channels learning general abstract latent representations. Well-trained recon-
struction auto-encoders learn good latent representations of the trained distri-
butions and can correctly reconstruct objects of known classes. It is expected
that a well-trained network could correctly reconstruct objects of known classes
(distributions), while could not represent the unknown or anomalous objects
with the learned representations and thus could not reconstruct objects of
unknown distributions. Since reconstruction errors are higher for objects of
unknown classes, the model can identify anomalous pixels and set them as

unknown.
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Figure 4.2: Training schema where e; denotes a layer on the closed-set encoder,
d; denotes a layer on the reconstruction decoder, and f; denotes a simplified
FiLM conditioning layer that has two encoders [ and ~. The model is
trained to reconstruct each image with matching and non-matching masks as
a way of enforcing the conditioning with good (match) and poor (non-match)
representations of the original image.

4.2.2
Conditioning

The conditioning mechanism is central for CoReSeg the model must
condition the reconstruction decoder to differentiate each known class and
better approximate the reconstruction from the input. The proposed model
assumes that poorly reconstructed pixels are prone to be unknown. The
conditioning mechanism encourages the model to learn shared features, like
textures and colors, to represent the known classes.

Our first attempt to condition the features extracted from the closed-set
encoder e, was to concatenate a generated tensor c, with the same spatial
dimensions of e, for every layer as Figure 4.3 shows. The reconstructed images
were very similar to the original and did not make the class characteristics
visible.

Inspired by Perez et al. (2018), we tried three conditioning mechanisms:
biasing or additive, scaling or multiplicative and affine transformation that

combines biasing and scaling.
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Figure 4.3: Concatenation conditioning - tensors from the ¢, conditioning
encoder with the e, closed-set encoder are concatenated and then processed
by the reconstruction decoder.

Asreported by Perez et al. (2018) affine transformations as a conditioning
mechanism were more robust and yielded better results than the three other
tested mechanisms. The Feature-wise linear modulation (FiLM) (Perez et al.,
2018) was adapted to be a pixel-wise mechanism capable of conditioning the
entire encoder respecting the spatial dimensions of each layer. Figures 4.4,
4.5 and 4.6 show the schematics of the three explained mechanisms: additive,

multiplicative and affine.

4.2.3
Architectural Variations of CoReSeg

CoReSeg is built on the idea that the result of the reconstructions
allows the identification of OOD. With this in mind, we tried some different
configurations for the architecture, looking for a final architecture capable of
improving the ability to differentiate and identify known classes and unknown
classes. The ablation results for the variations presented in this section are
presented in Chapter 6.

The first proposed model, referred to as the base model, can be seen in
Figure 4.7(a) and used the skip connections from the closed-set encoder condi-
tioned by the chosen conditioning mechanism as input for the reconstruction
decoder. The variation proposed, referred to as the full model, in Figure 4.7(b)
uses the raw skip connections to concatenate with the conditioned skip con-
nections as input for de reconstruction decoder.

Well-trained reconstruction or segmentation models have higher uncer-

tainty in reconstructing or segmenting objects’ borders. We include attention
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Figure 4.4: Additive conditioning - a pixel-wise (element-wise) summation is
computed between the ¢, conditioning encoder with the e, closed-set encoder,
and the resultant tensor is then processed by the respective reconstruction
decoder.

Closed-set
Encoder

I o c1

Conditioning Reconstruction
Encoder Decoder

Figure 4.5: Multiplicative conditioning - a pixel-wise (element-wise) multipli-
cation is computed between the c, conditioning encoder and the e, closed-set
encoder, and the resultant tensor is then processed by the respective recon-
struction decoder.

mechanisms just before each decoder layer as a mechanism to help CoReSeg in
an attempt to improve the OOD pixels recognition by focusing on the most rel-
evant features while reconstructing the input. Figure 4.8 shows the schematics

of the two variations of CoReSeg with the attention mechanism as explained in
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Figure 4.6: Additive-multiplicative conditioning - an affine operation for each
element in the closed-set encoder computed with the pixel-wise (element-
wise) multiplication between the 7, conditioning encoder and the e, closed-
set encoder, also computed a pixel-wise (element-wise) summation between
B, conditioning encoder and e,. The affine operation f, = v, X e, + [, is
computed for every parameter in the closed-set encoder and used as input to
the reconstruction decoder.

Section 2.4.1. Figure 2.7 summarizes the channel and spatial attention mech-
anism used. The CBAM mechanism employs 2 distinct attention mechanisms
serially. First, a channel attention mechanism refines the input enhancing the
most important feature maps, then a spatial attention mechanism enhances

the most relevant areas of the image.

4.2.4
Closed-set Training

Regardless of the architectural variations for CoReSeg, the training
procedure is the same and requires a pre-trained closed-set segmentation
model to generate latent features that will be later used as input to the
reconstruction decoder. For this reason, the first necessary step is to train
a U-net (Ronneberger et al., 2015) in a traditional closed-set scenario, where
only the known classes are learned. We call the encoder of this U-net the
Closed Set Encoder, and its output is the desired latent representation for the
conditional reconstruction training to be performed later. The resulting model
will be used in both Open-set Training and Deploy phases. Also, the weights
of this closed-set U-net will not change after its initial training, which means

that the semantic segmentation layers are frozen during the training of the rest
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4.7(a): Base model 4.7(b): Full model - closed-set skip connec-

tions to reconstruction decoder.

Figure 4.7: This figure shows the two variations for the use of skip connec-
tions in the reconstruction process. Figure 4.7(a) shows the proposed Base
model using the closed-set skip connections only as input for the conditioning
mechanism, Figure 4.7(b) shows a variation called the Full model that also
concatenates the same closed-set skip connections used before with the condi-
tioned tensor to use as input for the respective reconstruction decoder layer.

of CoReSeg’s framework.

4.2.5
Open-set Training - Conditional Reconstruction

Conditional Reconstruction training aims at reconstructing the image
that serves as input to the closed-set semantic segmentation block of the
framework from its latent representation. The reconstruction is guided by
a conditioning input, which, in the case of a semantic segmentation task,
is comprised of a mask providing a class for each pixel. The conditional
reconstruction block of the framework can be seen as an auto-encoder where
the conditioning layers are the encoder, and the reconstruction layers are
the decoder. Figure 4.2 shows how these different parts of the training are
connected.

To train the model to reconstruct the image taking into account the
conditioning input, CoReSeg uses for each input image 2 different masks to
condition the reconstruction. The first mask is the one correctly labeled for the

image (match mask, ¥,,). The second one is the label from a different image
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Figure 4.8: This figure shows both variations presented in Figure 4.7 adapted
to use the CBAM (Woo et al., 2018) attention mechanism.

(non-match mask, y,,,), which means that it incorrectly conditions the pixels
from the input image. The use of a non-match mask is important to make
sure the network is effectively learning to condition the input while not simply
reconstructing the image from the latent representation.

We employ the L1 loss in the reconstruction step. The final reconstruction

loss L is computed as follows:
L=L1(x, &) +ax L1z, Zm), (4-1)

where x is the input image, Z,, and Z,,, are the reconstructions conditioned
on ¥,, and y,,, respectively, while o weights the importance of each term.
Aiming to enforce the conditioning, the encoder from the conditional
reconstruction block applies a transformation to the intermediate features from
the frozen Closed Set Encoder layers (e;). The result of this transformation is
then used as input on the corresponding layer of the reconstruction decoder
(d;). In Figure 4.2, this process is represented by the f;(e;) blocks and
it is performed for both match and non-match conditioning masks. The
transformation responsible for the conditioning is the FiLM method proposed
by Perez et al. (2018) extended to work in a pixel-wise problem. More
specifically, to use the pixel-wise FiLM, the conditional reconstruction decoder

is composed of two auxiliary encoders: 5 and . Both encoders have the same
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shape as e; and d;. To apply the transformation, we perform the following
operation ; ® e; + 3;, where §; and ~y; are the i** blocks of the conditional
reconstruction encoder and e; is the output of the i* block from the Closed
Set Encoder. This procedure allows us to perform pixel-wise FiLM conditioning
on e;.

The reconstruction decoder uses as the main input the latent representa-
tion of the input image from the Closed Set Encoder. Furthermore, each layer
of the reconstruction decoder receives two additional inputs concatenated to
the previous layer activation: (i) the corresponding FiLM transformation (f;)
from the conditional reconstruction encoder, and (ii) the raw feature maps
from the corresponding Closed Set Encoder (e;). These concatenations can
also be viewed in Figure 4.2.

CoReSeg uses a stochastic training strategy as in Oliveira et al. (2021).
For each image in the dataset, a small number of randomized crops were
selected to be reconstructed. For each selected crop (and its corresponding
match mask), we choose from a randomized buffer of crops the one with the
least overlap between its mask and the selected match mask to be the respective
non-match image. This process is repeated for each crop inside the batch during

training.

4.2.6
Why Use Non-match Masks in Training?

Unsupervised learning produces semantic representations of the distri-
butions to the extent that those representations assist in reconstructing the
input as in the training dataset. The network is not encouraged to learn fea-
tures coupled with class information to reconstruct the input.

The conditional reconstruction adds the conditioning mask to the train-
ing procedure to enforce the network to learn features to distinguish among
known classes. Using only the correct ground truth for the input image to
condition the reconstruction allows the network to generate the needed latent
representation ignoring the conditioning mechanism and using mainly (if not
only) the closed-set encoder skip connections values. The empirical evaluation
confirmed the tendency of the network to undervalue the conditioning mask
and use mostly the closed-set encoder features values.

To overcome the tendency to undervalue the conditioning and encourage
the network to learn how correctly condition the input to its class, we use a non-
match mask in reconstruction training as detailed in Section 4.2.5. The non-
match reconstruction error becomes part of the loss calculation, as Equation 4-

1 shows.
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We tested two non-match strategies: a non-match selection and a syn-
thetic non-match generation. For the selection strategy, we selected a buffer
of random crops of the image and compared it with the match mask selecting
the one with the smallest intersection area. The synthetic generation strategy
changes each class of the match sample mask by a random different class. In
exploratory experiments, the synthetic generation strategy yields worse results.
We will only report the results using the selection approach.

For this kind of training to produce the desired result, the match and
non-match masks should have as few intersecting areas as possible, to force the
model to learn better features for the reconstruction. Therefore, the need for
distinct overlapping masks makes the selection of non-match crops much more
difficult in sparse datasets. The quality of the generated latent representations

strongly relies on crop selection and its intersection.

4.2.7
Deploy - Open-set Pixel Recognition

During deploy — shown in Figure 4.9 — we cannot provide match and
non-match masks for the conditional encoder, as the labels for these samples
are not available. So, to define which pixels are known and unknown CoReSeg
tries to condition every pixel for each known class.

The input image is processed by the closed-set semantic segmentation
block, generating a closed-set prediction. Then, the reconstruction decoder is
conditioned with K masks, with K being the number of known classes, where
all pixels from the mask my are set as the class k. Each one of these masks
will provide a reconstructed output where all pixels were conditioned by the
class k, and the corresponding reconstruction loss can be calculated from the
input image for all of them.

Then, for each pixel the minimum error for k € {1,2,..., K} is computed
and selected — where {1,2,..., K} is the set of known classes. Pixels that were
conditioned to the right class yield a small minimum error, while unknown
pixels result in higher error values for each one of the reconstructions, since
none of them match the right expected class. At last, a threshold operation
defines which pixels are known and unknown. We use error quantiles to set
thresholds and find the best performance for the model. If the minimum
reconstruction loss of a pixel is below the threshold, its class is deemed as
known and set to the closed-set predicted output, and otherwise, it is set as
unknown.

Figure 4.10 shows the images produced by the conditioning mechanism

proposed with impervious surfaces as UUC, from left to right, the figure
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Figure 4.9: The figure shows the “Deploy” schema where e; denotes a layer on
the closed-set encoder, d; denotes a layer on the reconstruction decoder, and
fi denotes a simplified FiLM conditioning layer that has two encoders 3 and

.

shows the input image, the ground truth with the UUC in red, the closed-
set prediction, the reconstruction errors conditioned to each of the four KKCs,
and the computed minimum error at right.

In Figure 4.10, we can highlight that due to the absence of the class
impervious surfaces during training, the closed-set model predicted the classes
car, low vegetation, and building for most of the area of impervious surfaces.
The shadows clearly influenced the predictions, and the borders of the cars
were not well predicted.

We can also point in Figure 4.10 the influence of the conditioning
mechanism on reconstructions, and for the reconstruction error images, the
darker shades of gray indicate lower errors. From the left, building conditioned
reconstruction error image shows the building areas are darker. High vegetation
conditioned reconstruction image shows the high vegetation areas in a darker
shade of gray. Low wvegetation conditioned reconstruction error image shows
cars and buildings in a lighter shade of gray with the original areas of low
vegetation in a darker shade, highlighting that intra-class and inter-class

variations make it harder to differentiate between low and high vegetation.
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Car conditioned reconstruction error is the last of the four images, and the
model could not reconstruct the image producing smaller errors for the cars.
The computed minimum error shows the impact of shadows on the
composite error image. The composite image shows larger errors reconstructing
areas in the presence of shadows or originally of low and high vegetation and

impermeable surfaces.

Error reconstructing conditioned by each KKC

Ground Closed-set Buildin High Low
Truth Prediction 9 Vegetation  Vegetation

- L | :

Figure 4.10: From left to right, the figure shows the input image, the ground
truth with the UUC in red, the closed-set prediction, the four conditioned
reconstruction error images, and the computed minimum error image. The
figure shows impervious surfaces as UUC, to produce the scenario we used the
LOCO protocol. The used colors are: white for impervious surfaces; dark blue
for building; light blue for low vegetation; green for high vegetation; yellow for
car; and red for the UUC. Also, the darker the pixel, the smaller the error.

Car Min. Error

uuc
Impervious
Surfaces

4.3
Improving Semantic Consistency with Superpixels

Superpixels are commonly employed before or during the segmentation
process (Ji et al., 2020; Melas-Kyriazi and Manrai, 2021; Kang et al., 2021;
Ratajczak et al., 2020; Zhang et al., 2014). In general, when employed as
post-processing, the input image is used to generate the SPS and apply it
somehow in the output prediction. This procedure produces more consistent
borders among objects and tends to improve semantic consistency for the
final segmentation. Following the literature, in the present work, we employ
superpixels as a post-processing step applied to the scores returned by the OSS
algorithms (i.e. reconstruction error, PCA/GMM likelihood, entropy, heat-
map, etc.).

The OSS methods used in this work generate an output tensor of the same
size as the input image containing the log-likelihood scores or reconstruction
errors according to the method. The proposed post-processing computes the
average value of each superpixel/segment producing a final score tensor with
the segment’s average value set to all pixels. Algorithm 1 details the usage
of the superpixel over-segmentation in the final step just before the open-
set recognition phase. While our post-processing scheme is agnostic to the
choice of SPS algorithm, in this study we evaluated SLIC (Achanta et al.,
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2012), Quickshift (QS) (Vedaldi and Soatto, 2008) and Felzenszwalb (FZ)
(Felzenszwalb and Huttenlocher, 2004). The three segmentation algorithms
chosen have different generation characteristics and distinct pros and cons, as
detailed in Section 2.6.

Figure 4.11(a) shows an example of an input image segmented using a
superpixel algorithm in Figure 4.11(b). Figures 4.11(c) and 4.11(d) show the
input image’s output score tensor produced by an OSS algorithm and the
same output tensor segmented using a superpixel algorithm. In a qualitative
analysis, the segmented image improved the delineation of the objects and
regions in the original image.

The theoretical complexity of the proposed procedure detailed in Algo-
rithm 1 is linear to the number of pixels in the image (O(n) with n the number
of pixels). Hence its use as post-processing is not computationally expensive
and can be coupled with OSS methods to improve the quality of the final

produced segmentation prediction.
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4.11(a): Original image score 4.11(b): Segmented image

4.11(c): Base method score 4.11(d): Score post-processed

Figure 4.11: This figure shows the effect of the use of the proposed post-
processing. The first line of images shows in Figure 4.11(a) the original
image and in Figure 4.11(b) the segmented image produced using the same
segmentation used to post-process the scores. The second line shows in
Figure 4.11(c) the output score from the OSS method and in Figure 4.11(d)
the superpixel post-processed score using the Algorithm 1.

The remaining steps of the open-set recognition process are kept the same
for each OSS method. The superpixel over segmentations are homogeneous and
tend to respect object borders. Applying the superpixels to the score image
smooths the segmented areas, aiding the OSS algorithm in avoiding errors
within the segmented objects.

The final superpixel segmentation reflects its generation characteristics.
We can see in Figure 4.13 an illustrative example of two SPS that present
different characteristics and may represent better different scenarios. The SLIC
algorithm could better represent textures, while the FZ algorithm could better
identify borders, but none of the single SPS could represent the underlying
image properly. Figure 4.13 also compares the single SPSs with the Fusing
Superpixels for the Semantic Consistency method proposed in the next section

that produces improvement when compared to the single SPSs.
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Algorithm 1 The algorithm used to apply superpixel segmentation to the
output tensor of the OSS method. The complexity of the procedure is linear
with respect to the number of pixels in the image (O(n) for n the number of
pixels).

Require: image
Require: superpixel segmentation
Ensure: segmentations labels are sequential from 0 to number of segments

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:

segments__sum < array(fill_value = 0, size = max__segment)
segments_px__count < array(fill_value = 0, size = max__segment)
140 > Two arrays of the size of the number of segments are used to
compute the mean value of the pixels for each segment. Each pixel of the
image is visited and its value is added to the segment_sum array and one
is added to the pixel count array

while 0 <=1 < image do
71+ 0
while 0 <= j < image do > get the label of the pixel
label = segments|i|[j] > sum score value
segment__sum|label]+ = imgli][J] > count the pixel
segment__pizel__countllabel]+ =1
j++
end while
1+ +
end while > compute the mean value for each segment

segment__value = segmentisum/ segment__pixel count
1< 0
new__image < image.clone() > set the mean computed mean value to
every pixel in the image
while 0 <=1 < image do
7+ 0
while 0 <= j < image do
label = segmentsli][j]
new__imgli, j] = segment_value[label]
j++
end while
t++
end while
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—> Alg. 1

—>» Alg.2

Figure 4.12: The figure shows a toy example illustrating the workflow to merge
two different superpixel segmentations. First, the input image x is processed
by 2 different superpixel segmentation algorithms (Alg. 1 and Alg. 2). Then
the generated segmentations s, and s, are merged into the final segmentation

S..sc Using the merging procedure described in Algorithm 2.

4.3.1
Fusing Superpixels for Semantic Consistency

All SPS algorithms share the same main goals: generate homogeneous
areas and respect borders among different objects. SPS algorithms aim to
minimize the intracluster/intrasegment variance while maximizing the inter-
cluster/intersegment variance.

Different SPS algorithms use distinct procedures and premises to produce
the final segmentation. Since the generation process is different from one to
another, each over-segmentation produced fails and succeeds in distinct ways
to achieve the intended representation.

The FuSC procedure fuses input segmentations from multiple types
of superpixel generation algorithms. Using distinct families of SPS methods
allows FuSC to take advantage of the different generation characteristics,
enhancing the advantages and mitigating the disadvantages of each method.
Figure 4.13 shows an example of how each single SPS represents ground truth
and compares to FuSC segmentation. We can observe through the qualitative
result that the FuSC improves the representation of the mask concerning the
ground truth.

The class with the highest pixel count is assigned to the entire segment

to generate ground truth that perfectly overlaps with all superpixels.
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Figure 4.12 illustrates the merging of two different superpixel segmen-
tations. As shown in the figure, the final SPS respects both segmentations’
borders, and each segment represents better the underlying region. FuSC is
agnostic to the SPS algorithm, being applicable to any set of distinct super-
pixel algorithms. However, in practice, using more than two algorithms yields
exceedingly small segments, motivating our experiments to focus only on pairs

of algorithms.

Algorithm 2 Pseudo-algorithm for the FuSC procedure and the auxiliary
procedure of joining segmentations. The complexity of the procedure is pseudo-
polynomial with respect to the number of pixels in the image and the minimum
size of the superpixel (Appendix A).

Require: scores > pixel-wise array
Require: segments > list of segments
1: procedure JOIN__SEGMENTATIONS(segl, seg?2)
2 joint = ||
3 for s1 € segl do > Selecting s2 € seg2 where s2 N sl # ()
4 for s2 € seg2.OVERLAP__SEGMENTS(s1) do
5: overlap area = sl M s2
6 joint.ADD__NEW__SEGMENT(overlap_area)
7 end for
8 end for > secure that the labels are connected and sequential
9 joint < connected__sequential__labels(joint)
10: return joint
11: end procedure
12:
13: procedure FuSC(segl, seg2)
14: joint = JOIN__SEGMENTATIONS(segl, seg2)
15: for s € joint do
16: if s.size < min_size then
17: closest = CLOSEST__NEIGHBOR(s, joint)
18: joint = MERGE__SEGMENTS(joint, s, closest)
19: end if
20: end for
21: return joint

22: end procedure

The first step of the fusion procedure is to generate unique segments by
superposing two different segmentations. This procedure can be executed by

running the following steps:

1. generates a new segmentation from the intersection of the input segmen-

tations;

2. relabel the masks securing that the mask is sequential, that each label is

used once and represents a connected area.
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Felzenszwalb SLIC FuSC Ground Truth

Patch 1

ar

Patch 2

Felzenszwalb SLIC FuSC Ground Truth

Figure 4.13: The figure shows the comparison of the resulting segmentation
from two SPS algorithms (Felzenszwalb and SLIC) and our proposed fusion
algorithm, FuSC. The first and third rows show the input image superimposed
with the superpixel segments and the second and fourth rows depict the closer
class fit of each segment according to the real labels. Red arrows indicate areas
where class boundaries failed when using one single SPS algorithm, while gray
arrows point to these same regions fixed after applying the FuSC algorithm.
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Both steps described above have theoretical complexity linear on the
number of pixels of the image (O(n) for n the number of pixels). This initial
merging procedure is prone to produce some extremely small segments.

To tackle the unwanted small segments side-effect, we use the Maha-
lanobis distance (MAHALANOBIS, 1936) to fuse the closest neighbor seg-
ments until there are no more segments below the specified pixel minimum
size. FuSC is detailed in Algorithm 2.

The theoretical complexity of the FuSC procedure is O(n X
minimum__size?), for n the number of pixels and minimum_size the pa-
rameter of the merge procedure. The code in python with the depiction of the

complexity analysis can be seen in Appendix A.

4.4
Proposed Methods and Research Questions

OpenGMM method proposed in Section 4.1 is an extension of the baseline
methods: OpenPCS (Oliveira et al., 2021) and OpenPCS++ (Martinez et al.,
2021). The proposed approach is an improvement of the previous methods
replacing the data representation strategy from the PCA with a GMM. The
quantitative results of OpenGMM compared to the baseline methods results
described in Section 7.1. These results show that OpenGMM can improve the
known benchmarks and answer RQ;.

Section 4.2 described CoReSeg a novel end-to-end fully convolutional ap-
proach to OSS. The quantitative results for CoReSeg compared to OpenGMM
and the baseline methods are presented in Section 7.2, and the obtained results
were even better than the ones obtained by OpenGMM. Section 7.4 shows the
results produced by all methods. CoReSeg produced better semantic consis-
tency for both the Vaihingen and the Potsdam datasets. This set of better
quantitative results and better semantic consistency produced answers RQs.

The last proposed approach, detailed in Section 4.3, is a general post-
processing technique that can be used with any OSS method. The quantitative
results for the post-processing are presented in Section 7.3 and produced better
results in thirty-nine in forty tested scenarios. The qualitative results for all
methods are presented in Section 7.4 and show continuous improvements in
semantic consistency as the methods were presented, with the best overall
results obtained post-processing CoReSeg’s results. Therefore, the proposed
post-processing can be used with any OSS method and answers the last

research question RQs.
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5
Experimental Setup

All experiments used PyTorch version 1.13 framework (Paszke et al.,
2019) to implement neural network models and backbones, with an NVIDIA
Titan X with 12GB of memory. All models fit on a single graphics card, filling
between 10 GB and 11 GB of memory.

SPS algorithms were implemented using the scikit-learn' and scikit-image
(van der Walt et al., 2014) libraries. The official implementations for FuSC,
OpenGMM, and CoReSeg are publicly available? encouraging reproducibility.

This chapter is organized as follows: Section 5.1 describes the used back-
bones and presents the closed-set results with and without the attention mech-
anism; Section 5.2 describes the basic training procedure and hyperparameters
for the CoReSeg and OpenGMM; Section 5.3 presents the tested datasets and
its key characteristics; Section 5.4 describes the leave one class out (LOCO)
protocol used to emulate an open-set scenario and the evaluation metrics; and
Section 5.5 describes used configurations to generate the superpixels for post-

processing.

5.1
Closed-set Backbones

Both OpenGMM and CoReSeg use closed-set backbones for semantic
segmentation, and the three used backbones are: DN-121 (Huang et al., 2017),
WRN-50 (Zagoruyko and Komodakis, 2016) and U-net (Ronneberger et al.,
2015). Figures 5.2 and 5.1 show the architectural schematics of all used closed-
set models.

All closed-set backbones were trained for 600 epochs for the Potsdam
dataset and 1200 epochs for the other datasets. Other training schemas are
stochastic batch selection; learning rate of 12107%; weight decay of 2210~}
after every 1/3 of the epochs; and batch balanced cross-entropy loss. Also, the
Adam solver (Kingma and Ba, 2014) was the used optimizer for all closed-set

models.

"https://scikit-learn.org/
’https://github.com/iannunes
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Figure 5.1: The figure describes the U-Net (Ronneberger et al., 2015) used as
backbones and also shows the variation adding the CBAM (Woo et al., 2018)
attention mechanism. The U-Net with CBAM model is the same standard
U-Net with the attention mechanism added after the blocks as shown in the
figure. All convolution layers use default padding and stride equal to one.
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Figure 5.2: The figure describes the two used backbones: DN-121 (Zagoruyko
and Komodakis, 2016) and WRN-50 (Huang et al., 2017); and also shows
the variations adding the CBAM (Woo et al., 2018) attention mechanism
to both models. WideResNet and DenseNet use the same basic dense block.
While DenseNet adds more sequential blocks making the network deeper, the
WideResNet uses fewer blocks but increases the number of channels. For our
experiments, WideResNet uses twice more channels as DenseNet. The number
of dense blocks used are shown inside the layer block.

All closed-set backbones were trained from scratch since the available
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pre-trained backbones were trained using 3-band RGB images and are heavily
distinct in both the image domain and the number of input bands.

Tables 5.1 and 5.2 shows the achieved results for the closed-set methods in
all five tested scenarios with and without the CBAM attention mechanism. The
best average results are in bold and we can see that the closed-set segmentation
with attention outperforms the results of the scenarios without attention in 21
of 24 average metrics, 9 out of 12 for the Vaihingen dataset and all 12 for the

Potsdam dataset.

DN-121 WRN-50 U-net

j a b kv 53 a b Kk j§ a b kK
- 69 8 84 7 69 8 8 T3 75 87 83 80
- 59 80 79 70 60 80 T8 TO 63 83 T2 75
72 89 87 8 70 89 8 &4 T3 93 79 89
- 66 89 84 79 64 8 8 Tr 70 89 17 84
- 69 8 81 76 67 8 8 T4 T3 84 84 79
Avg - 67 8 8 77 66 8 81 76 71 87 79 81
72 84 8 76 69 82 82 T4 T4 84 8 73
62 80 80 71 61 8 79 70 66 82 82 73
72 90 8 8 71 89 8 8 78 91 90 87
66 8 8 79 67 8 84 79 T3 88 87 82
69 82 81 75 67 8 80 74 T0 82 82 77
Avg v 68 84 83 77 67 83 82 76 72 85 85 T8

uucCc A

=W I | = O
1

slw|o|l—|o
AN NENEA YR

Table 5.1: The table shows the results for the closed-set models used as
backbones for the OSS task for the Vaihingen dataset. The UUC' column
shows the hidden class used to emulate an open-set scenario using the LOCO
protocol. The A column indicates the use of the CBAM attention mechanism.
The evaluations used four metrics: j for the mean intersection over union
(Jaccard distance); a for the global accuracy; b for the balanced accuracy; and
r is Cohen’s kappa. For the Vaihingen dataset, five emulated open scenarios
using as UUCs: 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; 4 - car. The best-achieved values are in bold. In this table, all
results are multiplied by 102.
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DN-121 WRN-50 U-net
uucCc A — ; ;

j a b kv 4§ a b kK j§ a b kK
0 - 61 76 79 64 55 73 78 61 T1 82 8 73
1 - 60 77 79 66 61 76 T8 64 68 82 83 73
2 - 62 82 8 73 60 79 8 69 73 8 88 80
3 65 82 83 73 56 78 79 67 T3 8 87 78
4 - 59 74 75 65 53 70 71 H9 64 T8 T8 71

Avg - 62 78 8 68 57 75 77 64 70 83 84 75
65 77 81 66 59 74 79 62 Tl 83 8 T4
65 80 82 70 62 78 79 67 68 82 84 T2
72 8 87 79 67 8 8 75 T6 88 89 83
71 8 87 78 62 81 8 72 75 87 88 80
63 78 77 70 55 71 72 61 64 78 77 70
Avg v 67 81 83 73 61 78 80 67 71 84 85 76

Rlw|lo|~|o
NININNTS

Table 5.2: The table shows the results for the closed-set models used as
backbones for the OSS task for the Potsdam dataset. The UUC column
shows the hidden class used to emulate an open-set scenario using the LOCO
protocol. The A column indicates the use of the CBAM attention mechanism.
The evaluations used four metrics: j for the mean intersection over union
(Jaccard distance); a for the global accuracy; b for the balanced accuracy; and
k is Cohen’s kappa. For the Vaihingen dataset, five emulated open scenarios
using as UUCs: 0 - impervious surfaces; 1 - building; 2 - low vegetation; 3 -
high vegetation; 4 - car. The best-achieved values are in bold. In this table, all
results are multiplied by 102

5.2
Hyperparameters

For further analysis, all architectural choices, hyperparameters, and
methods are available as per the codes and configuration files on the project

website. The main ones are described in the two following sections.

5.2.1
OpenGMM

To the extent of this work, we used the GMM implementation of scikit-
learn3. We configured the number of components and the regularization added
to the diagonal of the covariance matrix to compute the Gaussian Mixture of
Models.

3https://scikit-learn.org/stable/modules/generated/sklearn.mixture.
GaussianMixture.html
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In our exploratory experiments, we used five different numbers of mixture
components (2, 4, 8, 16, and 32) as parameters to define the best value
applicable in our case. We found that any value above 4 configured as the
number of components did not change the final result for the produced OSS.
As the GMM is computed faster and with a smaller number of components,
we defined the value of 4 as the production parameter.

The reg covar parameter was set to 1 x 1072, and this was the smallest
regularization value that allowed the GMM algorithm to execute without errors
for all hidden scenarios. This regularization value is added to the diagonal of

the covariance matrix ensuring that the matrix is all positive.

5.2.2
CoReSeg

Some used hyperparameters are common despite the architectural vari-
ations presented in Chapter 4. We defined an initial learning rate of 1 x 1073,
with a weight decay of 0.2 for every one-third of the total epochs. We also used
a stochastic batch selection of size 2 for Vaihingen and 1 for Potsdam and ex-
ecuted the network for forty epochs for Vaihingen and thirty for Potsdam. We
used the Adam solver (Kingma and Ba, 2014) as the optimizer to minimize

the L1 loss function in the reconstruction module of CoReSeg.

5.3
Vaihingen and Potsdam Datasets

This section describes the used datasets with their available bands or
channels, resolutions, known classes, and train-test-validation split. Table 5.3

shows the key characteristics of the datasets.
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Feature Vaihingen Potsdam

type of sensor optical (Near infrared, Red, Green)
digital surface mode band Yes

number of classes 6

multi-temporal no

timestamps 1

number of bands 4

impervious surfaces, building,

KKCs low vegetation, high vegetation,
car
miscellaneous,
KUCs . .
segmentation boundaries
spatial resolution 9 cm 5 cm
size (pixels) 248.798.532 1.368.000.000
labeled pixels 248.798.532 1.368.000.000

Table 5.3: Summary of key characteristics of the datasets.

The experiments used the International Society for Photogrammetry
and Remote Sensing (ISPRS) 2D Semantic Labeling datasets of Vaihingen
and Potsdam. Both datasets were previously used in OSS (da Silva et al.,
2020; Oliveira et al., 2021; Nunes et al., 2022b). Vaihingen images present a
9cm /pixel spatial resolution, varying from 2000 to 2500 pixels per axis, while
Potsdam samples have a 5cm /pixel spatial resolution and 6000 x 6000 pixels
each. Both datasets are labeled with the same classes listed in Table 5.4,
divided into 5 KKCs: impervious surfaces, buildings, low vegetation, high
vegetation, car; and 2 KUCs: segmentation boundaries between objects and
miscellaneous. Among KUCs, the miscellaneous class is composed mostly of
areas presenting image acquisition noise and objects unimportant to practical
remote sensing applications, motivating its removal from the experimental
procedure. The experiments used the same four bands employed in previous
works on OSS (Oliveira et al., 2021; Nunes et al., 2022b), namely IR-R-G-
nDSM.

‘https://www.isprs.org/education/benchmarks/UrbanSemLab/default.aspx
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Id | Class

Impervious Surfaces

Building

Low Vegetation

High Vegetation
Car

Miscellaneous

N[O | O | W N~

Segmentation boundaries

Table 5.4: The table shows all mapped classes for Vaihingen and Potsdam
datasets. For this work classes: 6 (miscellaneous) and 7 (segmentation bound-
aries) are set as unknown.

Table 5.5 shows the dataset’s divisions used during this work. The
datasets were separated into three sets of images each: training, validating,
and testing. The numbers presented in Table 5.5 are the reference used in the

original file names downloaded from the official repository of each dataset.

Image set | Vaihingen Potsdam

2 10,2 13,2 14,3 10,
3.12,3 13,3 14,4 11,
4 12,4 13,4 14,4 15,
1,3,5,7, 13, 17, 5.10,5 12,5 13,5 14,

Train
21, 26, 32, and 37 5 15,6_8,6_9,6_ 10,

6_11,6 12,6 13,6 15,
7T 0,7 9 7 11,7 12,
and 7 13

Validation | 23 3 11land 6 14
2 11,2 12,4 10,5 11,

Test 11, 15, 28, 30, and 34

6 7,7 8and 7 10

Table 5.5: The table shows the selected patches according to their original
nomenclature. Each dataset was divided into three divisions: train, validation,
and test.

5.4
Evaluation Protocol

The used datasets were built to perform closed-set semantic segmenta-
tion. The LOCO protocol used by Oliveira et al. (2021) was also applied in
this work to emulate open-set scenarios. The LOCO protocol splits the known

classes and selects a subset of them to be ignored during training, allowing the
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evaluation of open-set methods on the chosen hidden classes. This protocol al-
lows both the computation of overall performance and class-by-class metrics.
Figure 5.3 shows an example of the use of the protocol, presenting the input
image on the left, its original ground truth, and all five emulated open-set

scenarios on the right.

Image Closed Set UUC: Imp. Surfaces UUC: Building

Imp.

L
B Building [ o [ Tree O car B Unknown
Surfaces Veg

et.

UUC: Low Veget. UUC: Tree UUC: Car

Figure 5.3: An example of LOCO protocol showing a small patch extracted
from the Vaihingen dataset as the input image. On the right, one patch presents
the original closed-set classes, and the other five patches show the generated
labels with the LOCO protocol according to the legend.

To ensure that only information about the KKCs is available for training,
we only backpropagate the loss of pixels from known classes, ignoring the

background, borders, miscellaneous, and unknown classes.

5.4.1
Evaluation Metrics

For the quantitative assessment of produced open-set segmentations, we
used the Receiver Operating Characteristic (ROC) curve and the Area Under
the ROC (AUROC) curve to compare the results of the different methods in
a threshold-independent manner. The AUROC also provides evidence of the
overall performance of each method.

The ROC curve evaluates the entire range of thresholds on a plot of True
Positive Rate (TPR) vs. False Positive Rate (FPR), showing the threshold-
dependent relationship between the FPR and TPR. The AUROC evaluates
the model performance trade-off between known and unknown conditions.
To compute the AUROC, KKCs are treated as positives and the UUCs as
negatives. The AUROC values range between 0 and 1, and a value of 1 means

a perfect detection of the known classes compared to the unknown classes.
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The FPR, also called specificity, measures the fraction of unknown
classes misclassified as one of the known classes. A high FPR indicates that
unknown conditions are conflated with some known class. The TPR, also called
sensitivity, is the probability of a positive pixel testing positive. The following

equations are used to compute TPR and FPR:

TPR=TP/(TP + FN) (5-1)

and
FPR=FP/(FP+TN), (5-2)

where TP, TN, FN, and FP refer to True Positives, True Negatives, False
Negatives, and False Positives, respectively.

The AUROC is a suitable measure for evaluating the performance of
proposed methods against baselines across the entire threshold spectrum. The
definition of a single threshold can result in an incorrect assessment of the
performance of KKCs and UUCs. Setting a restrictive threshold may under-
estimate the UUCs. On the other hand, a broad threshold may overestimate
UUCs to the detriment of KKCs.

AUROC: The ROC curve describes the threshold-dependent relationship
between the FPR and TPR, and the area under the ROC curve is a metric
to evaluate the model performance trade-off between known conditions and
unknown conditions. Here, all the known conditions are treated as positives,
while the unknown conditions or open classes are treated as negatives. A
100% AUROC means a perfect detection of the known classes compared to

the unknown classes.

5.5
Superpixel Configurations

This section presents all superpixels configurations used by the post-
processing proposed in Section 4.3 to run the tests of this work with its
results in Chapters 6 and 7. An important observation is that in general the
hyperparameters used for the single SPS generation algorithms produce smaller
superpixels than the base single SPS algorithms merged with FuSC.

We did preliminary exploratory experiments using a grid search to
determine the parameters for each superpixel algorithm. In these tests, we
used the average size of the produced superpixels to choose the configurations
presented in this section. We do not present the results of these experiments
as the selected superpixel algorithms are widely used and have plenty of work
using them. Table 5.6 shows the average size of produced superpixels for the
Vaihingen dataset.

In the list below, FZ stands for the Felzenszwalb algorithm (Felzenszwalb
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and Huttenlocher, 2004), QS stands for the Quickshift (Vedaldi and Soatto,
2008) algorithm, and SLIC stands for the method with the same (Achanta
et al., 2012):

1. Single SPS algorithms:

(a) Felzenszwalb algorithm:

i. f201: FZ (scale: 50, o: 0.5, min__size: 50)

ii. f202: FZ (scale: 100, o: 0.5, min_ size: 50)
iii. f203: FZ (scale: 200, o: 0.5, min__ size: 50)
iv. f204: FZ (scale: 400, o: 0.5, min__ size: 50)
v. f205: FZ (scale: 50, o: 0.5, min_ size: 100)
vi. f206: FZ (scale: 100, o: 0.5, min_ size: 100)

(b) SLIC algorithm:
i. slic01: SLIC (n_segments: n_ pixels+1400, compactness: 5, o:
1)
ii. slic02: SLIC (n_segments: n_ pixels+700, compactness: 5, o:
1)
iii. slic03: SLIC (n_segments: n_ pixels+ 500, compactness: 5, o:
1)
iv. slic04: SLIC (n_segments: n_ pixels+350, compactness: 5, o:
1)
v. slic05: SLIC (n_segments: n_ pixels+230, compactness: 5, o:
1)
vi. slic06: SLIC (n_segments: n_ pixels+170, compactness: 5, o:
1)
(¢) Quickshift algorithm:
i. quick01: QS (kernel size: 2, max_ dist: 50, ratio: 0.5)
ii. quick02: QS (kernel size: 3, max_ dist: 50, ratio: 0.5)
iii. quick03: QS (kernel_size: 4, max_ dist: 50, ratio: 0.5)
iv. quick04: QS (kernel size: 5, max_ dist: 50, ratio: 0.5)

2. FuSC:
(a) combine Felzenszwalb with SLIC:

i. fz_ slicO1:

— SLIC (n_segments: n_ pixels-=-2000, compactness: 5, o: 1)
— FZ (scale: 200, o: 0.7, min__size: 200)
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ii. fz_ slic02:

— SLIC (n_segments: n_ pixels-=-1500, compactness: 5, o: 1)
— FZ (scale: 100, o: 0.7, min__size: 150)

iii. fz slic03:

— SLIC (n_segments: n_ pixels+1000, compactness: 5, o: 1)
— FZ (scale: 100, o: 0.7, min_ size: 150)

iv. fz_ slicO4:

— SLIC (n_segments: n_ pixels+500, compactness: 5, o: 1)
— FZ (scale: 50, o: 0.7, min_ size: 100)

(b) combine Felzenszwalb with Quickshift:

i. fz_ quickO1:

— QS (kernel_size: 2, max_ dist: 50, ratio: 0.5)
— FZ (scale: 200, o: 0.7, min_ size: 200)

ii. fz_ quick02:

— QS (kernel_size: 3, max_ dist: 50, ratio: 0.5)
— FZ (scale: 200, o: 0.7, min_ size: 200)

iii. fz_ quick03:

— QS (kernel_size: 4, max_ dist: 50, ratio: 0.5)
— FZ (scale: 200, o: 0.7, min__size: 200)

iv. fz_ quick04:

— QS (kernel_size: 5, max_ dist: 50, ratio: 0.5)
— FZ (scale: 200, o: 0.7, min__size: 200)

(¢) combine SLIC with Quickshift:

i. quick_slicO1:

— QS (kernel_size: 5, max_ dist: 50, ratio: 0.5)
— SLIC (n_segments: n_ pixels--2000, compactness: 5, o: 1)

ii. quick_ slic02:

— QS (kernel_size: 5, max_dist: 50, ratio: 0.5)

— SLIC (n_segments: n_ pixels-=-1500, compactness: 5, o: 1)
iii. quick_slic03:

— QS (kernel_size: 5, max_dist: 50, ratio: 0.5)

— SLIC (n_segments: n_ pixels+1000, compactness: 5, o: 1)
iv. quick slic04:

— QS (kernel_size: 5, max_ dist: 50, ratio: 0.5)
— SLIC (n_segments: n_ pixels+500, compactness: 5, o: 1)
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SPS configuration | average pixels/superpixel
fz01 322
202 491
fz03 849
fz04 1469
fz05 582
tz06 780
slic01 2959
slic02 1317
slic03 897
slic04 639
slic0b 366
slic06 261
quick01 367
quick02 824
quick03 1471
quick04 2272
fz_quick01 157
fz_ quick02 254
fz__quick03 344
fz_ quick04 423
fz_slicO01 630
fz_ slic02 554
fz_ slic03 462
fz_ slic04 306
quick slicO1 622
quick_slic02 545
quick_slic03 454
quick_slic04 301

Table 5.6: The table presents the average count of pixels per superpixel for the
Vaihingen dataset.
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6
Ablation

This chapter will present some experiments executed to define the best
hyperparameters for CoReSeg and for the superpixel post-processing. These
experiments are also evidence of better FuSC performance over single SPS
algorithms.

The ablation chapter will not cover OpenGMM as while testing, the re-
sults achieved were similar for all tested parameter combinations. It is worth
mentioning that for OpenGMM, we changed the number of components to
generate de mixture of Gaussians between 4, 8, and 16, but the experiments
yielded the same AUROC. Since the results were the same and fewer com-
ponents were executed faster, we used 4 Gaussian components in our final
experiments.

Vaihingen and Potsdam have many similarities, but Vaihingen is smaller
and executes each training round relatively faster. The possibility of running
more tests made the Vaihingen dataset the natural choice for the ablation. All
results presented in this chapter are for the Vaihingen dataset.

This chapter presents two ablation sets of experiments in detail. Sec-
tion 6.1 details the tests with parameter and model architecture variations
for the CoReSeg, and Section 6.2 shows the post-processing with single SPS

algorithms and FuSC with different parameter configurations.

6.1
CoReSeg

We choose to test the model with some variations on hyperparameters to
select the model for the other datasets. For the CoReSeg, we ran preliminary
tests to define the number of epochs testing from 20 to 100 in steps of size
10, observing better results training for 40 epochs. We established 40 as the
number of training epochs for both the ablation and final tests. As a final
refinement, our train procedure selects the model with the highest AUC in the
validation set and runs extra five epochs on this model.

There are two variations of the model: first, called full model in Table 6.1,
the input for the reconstruction encoder blocks is the concatenation of the

previous layer output with raw skip connections from the closed-set encoder
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and with the same skip connections conditioned by the conditioning encoders
as explained in Section 4.2, second, called base in Table 6.1, the input is formed
only by the output of the previous layer and the conditioned skip connections.
Column Skip in Table 6.1 indicates the CoReSeg variation used.

We used Adam optimizer (Kingma and Ba, 2014) with two different
initial learning rates 1 x 1072 and 5 x 107, both learning rates decaying every
1/3 of the epochs with 0.2 as a multiplicative factor.

We also tested adding an extra convolutional block just before the final
layer of the model. This block was composed of a Convolutional followed by
Normalization and Activation layers. The column FC' of Table 6.1 shows these
configurations.

The most direct observation is that the extra final convolutional block
made the model perform worse when compared to the model without this
block in all cases. We tested with different learning rates (LR) and achieved
mixed results using LR = 0.001 and LR = 0.0005. Training using LR = 0.001
performed better in more cases, and the best model also used LR = 0.001. The
LR set as 0.001 was better in all cases for CoReSeg+Att. It is worth mentioning
that the result was neither final nor conclusive. The reasoning proposed by
Smith et al. (2017) stated that changing only the LR without changing the
batch size or increasing the number of epochs is not the most suitable, which
may explain why the results were not conclusive. Changing LR may require
extra fine-tuning in batch size may also be necessary, and according to Smith
et al. (2017) bigger batch sizes converge faster.

We also tested two distinct model variations, as detailed in Section 4.2.3
and called full, base model, for each model-backbone configuration. Both
variations performed close for the best model (CoReSeg+Att), with the
variation called full model performing slightly better. For the two other
tested model configurations without attention module for CoReSeg, the base
configuration performed better. The CBAM attention mechanism improved
the results used in the backbone and the CoReSeg model alone or together.

The base model has roughly 72 million parameters, and the full model has
roughly 102 million parameters. Since the full model showed the best results,
and due to the computational time needed, we decided to use only the full
model configuration to run the complete set of tests presented in Chapter 7.
The needed running time was the key constraint in not running both model
variations.

The ablation results for the base were promising since the model is smaller
and faster. Further analysis is needed to understand better in which scenarios
it should be better.
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. UUCs Avg.

MA BA Skip FC LR 0 1 5 3 1 AUROC
v v full X 001 84 .90 69 .72 .72 7174
v v full X 0006 .87 .77 .69 .75 .70 753
v v full v 001 84 8 65 .79 .62 751
v v full v 0005 .84 .79 68 .73 .66 739
v v base X 001 8 .87 .71 .74 .67 .769
v v base X .0006 8 .84 .67 .79 .64 758
v v base V 001 .75 .79 65 .72 .65 712
v v base v .0006 .84 .58 .67 .67 .71 .693
v v Average .84 .80 .68 .74 .67 144
- - full X 001 .88 .82 .68 .66 .68 742
- - full X .0006 .82 .91 .67 .75 .59 746
- - full v 001 .78 66 .68 .69 .73 .708
- - full v 0005 .73 55 .69 .70 .72 .679
- - base X 001 83 81 .68 .74 .66 744
- - base X .0005 87 .78 .70 .75 .70 .758
- - base v 001 .78 .73 .67 .67 .74 17
- - base v .00056 .79 .65 .69 .65 .77 712
- - Average S 1 68 70 .70 726
- v full X 001 .89 .77 69 .74 .63 742
- v full X 0006 .84 .78 .64 .83 .59 733
- v full v 001 80 .63 .64 .68 .73 .696
- v full v 0005 .77 .55 .72 .67 .70 .682
- v base X 001 8 .78 69 .78 .64 748
- v base X .0006 .89 .77 .70 .79 .67 .765
- v base 001 .77 .60 .69 .63 .68 674
- v base v 0005 .79 65 .73 .71 .74 724
- v Average 82 .69 .69 .73 .67 L1721

Table 6.1: The table shows results for the CoReSeg method and the variations
proposed in section 4.2 tested only with the Vaihingen dataset, varying 3
different parameters (Skip, FC, and LR). The Skip column indicates the
skip connection strategy, using only before conditioning or concatenating
with the conditioned tensor to feed the reconstruction decoder. The FC
column indicates if a final convolutional layer is added, and the LR column
indicates the initial learning rate for the reconstruction decoder. Also, the
MA column indicates if CoReSeg is using the CBAM attention mechanism
in the reconstruction module, and the BA column if the U-net backbone is
using the CBAM attention mechanism. In bold are the best results for each
combination of method and backbone, the darkest gray rows are compared
between themselves. The UUC numbers are respectively: 0 - impervious
surfaces; 1 - building; 2 - high vegetation; 3 - low vegetation; and 4 - car.


DBD
PUC-Rio - Certificação Digital Nº 1821003/CA


PUC-Rio- CertificagaoDigital N° 1821003/CA

Chapter 6. Ablation 78

6.2
Superpixel Post-processing

This section presents the results of the initial tests executed on the
Vaihingen dataset. These tests also defined the hyperparameters used to
perform the final tests shown in Chapter 7. For this ablation, we selected the
two methods presented in this work to run the tests, CoReSeg and OpenGMM.
For the OpenGMM method, we used the two backbones with higher closed-set
accuracy.

A total of seventy-two different tests were executed and presented in the
Tables 6.2, 6.3 and 6.4. Also, to evaluate post-processing performance using the
single superpixel algorithm and FuSC, we tested 24 different settings detailed
in Section 5.5.

Table 6.2 shows the results for CoReSeg. FuSC configuration called
fz_slic/ obtained the best average performance. Post-processing using this
configuration improved the AUROC by 0.023 or 2.7%, with 24 of the 28 tested
FuSC configurations improving the base results. The worst results came from
the settings with the highest pixel count per segment. With larger superpixels,
the segmentation lost its ability to represent the underlying image.

Table 6.3 shows the results for OpenGMM with DN-121 as the backbone.
The post-processing with fz2 configuration improved the base results by 0.10
or 1.3%. Results achieved by post-processing this family of test scenarios pre-
sented the worst performance since only 50% of the superpixel configurations
improved the base results. The fz2 Felzenszwalb’s single SPS configuration
achieved the best results followed by three other configurations using the same
algorithm. The use of SLIC and QuickShift single SPS or merged with FuSC
delivered the worst results, especially with the larger superpixels.

Table 6.4 shows the results for OpenGMM with WRN-50 as the back-
bone. Post-processing with fz2 configuration improved the base results by 0.14
or 1.9%. The fz2 Felzenszwalb’s single SPS configuration achieved the best
results followed by three others using the same algorithm. With this OSS com-
bination of method and backbone, 17 of 28 total SPS configurations improved
the base results. As in the other OpenGMM tested scenario, using SLIC and
QuickShift single SPS or merged with FuSC delivered the worst results, espe-
cially with the larger superpixels.

FuSC configurations achieve much more stable average results than single
SPSs configurations. The average results and the standard deviations - grouped
by: method, backbone, and SPS algorithm - are presented in Table 6.5. We can
observe the much smaller standard deviation of FuSC configurations suggesting

that FuSC produces similar results with different base single SPS algorithms
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SPS UUCs Avg.

config. 0 1 2 3 4 AUROC PX/seg
- 884 934 710 867 .8h4 850 0
fz_slicd 006 960 .730 .883 .886 873 306
fz slic3 006 960 .730 .881 .883 872 462
f21 005 959 731 .882 .880 871 322
fz quickl 906 .58 .729 .882 .88l 871 157
fz_slic2 006 .961 729 879 .879 871 554
22 000 958 730 .877 .888 871 491
fz quick2 909 050 .730 .881 .873 870 254
fz quick3 909 950 .730 .879 875 870 344
25 006 960 .732 .882 .87l 870 582
slic6 004 959 728 .884 876 870 261
f, quickd 908 960 .731 878 873 870 423
26 001 959 731 877 .879 869 780
fz slicl 005 960 .728 877 .876 869 630
slich 004 959 720 883 868 869 366
quickl 9010 959 730 .881 .861 868 367
quick slicd 908 960 .729 .884 .856 867 301
slicd 004 958 727 879 855 865 639
23 888 054 724 861 .891 864 849
quick_slic3 908 960 .729 882 .831 862 454
slic3 004 957 724 877 .834 859 897
quick? 912 960 .720 877 813 858 824
quick slic2 909 960 .728 .879 .808 857 545
quick slicl 908 960 .727 .878 .800 855 622
slic2 002 955 720 870 .810 851 1317
fz4 867 037 712 830 .898 849 1469
quick3 009 958 727 867 .753 843 1471
slicl 804 048 713 857 .74l 831 2059
quick4 905 955 724 858 .709 830 2272

Table 6.2: The table shows the results for the Vaihingen dataset using CoReSeg
compared with the results obtained from post-processing with different super-
pixel settings. The first row shows CoReSeg without post-processing, and the
rows below present the results for distinct superpixel configurations sorted by
average AUROC. The best results achieved are in bold for each column. This
table shows AUROC results in all columns. The UUC numbers stand for re-
spectively: 0 - impervious surfaces; 1 - building; 2 - high vegetation; 3 - low
vegetation; and 4 - car.
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SPS UUCs Avg.

config. 0 1 5 3 4 AUROC Px/seg
- 872 936 646 .688 .687 .766 0
{22 880 954 650 .696 .701 776 491
fz1 881  .953 .654 696 .692 775 322
76 880 .955 .650 .697 .690 774 780
fz5 882 954 .654 .697 .680 773 582
fz__quick4 882 954 651 .698 .677 772 423
fz_quick3 882 953 .651 .698 676 772 344
fz quick2 881 952  .652 .697 .677 772 254
fz_quickl 879 949 652 .696 .682 772 157
23 874 952 637 .687 .704 771 849
fz slic2 881  .954 646 .695 .678 771 554
fz_slicl 880 .955 644 .694 678 770 630
fz slic4 879 952 648 696 .675 770 306
fz_ slic3 880 .953 646 .696 .674 770 462
quickl 881 950 .648 .696 .655 .766 367
slic6 876 .947 645 .691 .668 765 261
quick slic4 .880 .951 .647 .695 .652 .765 301
slich 876 .948 645 .692 .664 .765 366
quick slic3 .881 .953 .643 .695 .633 761 454
slic4 875 .949 640 .690 .649 761 639
quick?2 882 954 644 .698 614 758 824
quick slic2 .882 .954 643 .694 616 758 545
quick slicl .882 .954 641 .694 .609 756 622
slic3 875 950 .636 .689 .628 756 897
fz4 858  .940 .610 .650 .711 754 1469
slic2 874 949 630 .686 .611 750 1317
quick3 882 954 636 .696 .567 147 1471
quick4 878 953 629 .691 539 738 2272
slicl 869 943 612 .674 546 729 2959

Table 6.3: The table shows the results for the Vaihingen dataset using
OpenGMM with DenseNet-121 as the backbone compared with the results
obtained from post-processing with different superpixel settings. The first row
shows CoReSeg without post-processing, and the rows below present the re-
sults for distinct superpixel configurations sorted by average AUROC. The
best results achieved are in bold for each column. This table shows AUROC
results in all columns. The UUC numbers stand for respectively: 0 - impervious
surfaces; 1 - building; 2 - high vegetation; 3 - low vegetation; and 4 - car.
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SPS UUCs Avg.

config. 0 1 5 3 4 AUROC Px/seg
- 885 90l1 611 .648 619 735 0
22 004 936 .622 .665 .618 749 491
f21 006 934 624 .665 .608 AT 322
26 006 937 622 .668 .604 AT 780
25 009 937 625 .667 .589 745 582
fz quick2 .91 935 .626 .663 .501 745 254
fz quickl 906 932 .624 .66l .601 745 157
fz quick3 .91 937 625 .665 .587 745 344
fz quickd 911 938 .624 .665 .585 745 423
fz_slic2 910 938 619 .665 .588 744 554
£23 808 .934 611 .659 .616 744 849
fz_slicd 006 034 622 .663 .59 743 306
fz slicl 008 938 618 .665 .583 42 630
fz slic3 009 937 618 .664 583 42 462
quickl 010 935 .624 .661 .566 739 367
slic6 901 930 619 .658 .583 7738 261
slich 003 931 619 659 .578 738 366
quick slicd 908 935 .620 .660 .557 7736 301
slicd 005 933 616 .659 .557 734 639
quick slic3 911 938 618 .661 .532 732 454
quick2 915 939 620 .662 .54 730 824
slic3 006 933 614 .659 .534 7729 897
quick slic2 911 939 .620 .660 .515 729 545
fz4 878 924 592 630 .620 720 1469
quick_slicl 911 .940 .619 .659 .515 729 622
slic2 006 934 611 .657 .508 723 1317
quick3 014 .941 618 .660 .463 719 1471
quick4 010 040 .613 .654 446 713 2272
slicl 002 929 508 647 .448 705 2059

Table 6.4: The table shows the results for the Vaihingen dataset using
OpenGMM with WideResNet-50 as the backbone compared with the results
obtained from post-processing with different superpixel settings. The first row
shows CoReSeg without post-processing, and the rows below present the re-
sults for distinct superpixel configurations sorted by average AUROC. The
best results achieved are in bold for each column. This table shows AUROC
results in all columns. The UUC numbers stand for respectively: 0 - impervious
surfaces; 1 - building; 2 - high vegetation; 3 - low vegetation; and 4 - car.
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Method PP UUCs Aveg.

0 1 2 3 4
OpenGMM - 872 936 .646  .688 .687  .766
OpenGMM FuSC .881 .953 .647 .696 .661 .767

OpenGMM  SPS 876 950 639 689  .645  .760

CoReSeg - 884 934 71 867  .854  .850
CoReSeg FuSC .907 .9601 .7297 .880f .860f .8677
CoReSeg SPS 901 956 726 871 839  .839
OpenGMM - 885 911 611 648 .619 735
OpenGMM FuSC .9097 .937 .621 .663  .569 .740
OpenGMM  SPS 905 934 616  .658  .553  .733

=l=l=l|clgcloloo w

Table 6.6: The table compares the average AUROC results between all tested
scenarios with and without post-processing. In bold are the best-achieved
results for the combination of method, backbone, and post-processing. The
T symbol points to the best average results overall. The UUC numbers are
respectively: 0 - impervious surfaces; 1 - building; 2 - high vegetation; 3 - low
vegetation; and 4 - car. The B column indicates which backbone was used: “U"
for U-net, “D" for DN-121, and “W" for WRN-50.

hyperparameters.

Finding suitable hyperparameters is one of the most time-consuming
tasks when using superpixel algorithms. The distance among the achieved
results presented in Tables 6.2, 6.3, and 6.4 shows that bad hyperparameters
choices can lead the post-processing to worsen the results.

As stated in Section 5.5, the single SPSs merged using FuSC originally
produce larger superpixels than the ones generated by the single SPSs configu-
rations used in tests. Despite the larger input superpixels, the FuSC procedure
generates medium-sized superpixels performing very homogeneously among
tested configurations. This behavior may corroborate that FuSC is more ro-
bust to hyperparameter selection.

Table 6.6 shows the average results of FuSC and single SPS algorithms for
each combination of method and backbone used for this ablation. The { symbol
indicates the best overall average results for each UUC and also for the average.
The cells in bold indicate the best average results within the combination of
method and backbone. FuSC achieved the best average AUROC results in all
tested scenarios. As pointed out before in this chapter, the results obtained by
FuSC are more stable and much closer. FuSC configurations performed better
on average, even though a single SPS algorithm achieved the best individual

performance.
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6.3
Conclusion

This ablation study defined the set of configurations used in post-
processing for all combinations of methods and backbones and the hyperpa-
rameters and final CoReSeg architecture. The selected configurations, hyper-
parameters, and architecture were used to run all the final tests and motivated
the discussion in the next chapter.

Based on Table 6.1, the selected CoReSeg architecture uses the attention
mechanism in the closed-set backbone and in the reconstruction module. For
the final tests, only the configuration with the best hyperparameters was used
to compare with the other methods.

To run the final tests, all used methods were post-processed using the
same set of SPS configurations which performed best for each UUC and the
average for all scenarios as presented in Tables 6.2, 6.3, and 6.4. The final list of
the twelve selected configurations follows z01, {202, {z04, {z05, {206, quick02,
fz_quick02 mean, fz quickO4 mean, fz slic02 mean, fz slic0O4 mean and
slic06.

To better observe the evolution of the results of this ablation study,
Figure 6.1 presents the OSS methods results with and without post-processing.

Some final observations worth mentioning for all post-processing scenar-

ios:
1. in all tested scenarios the post-processing improved the original results;

2. FuSC performance was much more stable among the different configura-

tions;
3. FuSC configurations deliver medium-sized superpixels;

4. the highest the AUROC the most consistent was the improvement
obtained post-processing the OSS;

5. the size of the superpixels must be able to properly represent objects
in the underlying image. Superpixel configurations with medium size

objects achieved the best results ;

6. single or FuSC using the Felzenszwalb algorithm obtained better results
in all tested scenarios, suggesting that the generated superpixels may

present characteristics that better represent remote sensing images.
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WideResNet 50 - OpenPCS WideResNet 50 - OpenGMM CoReSeg

UUC: Low Veg. UucC: Building UUC: Imp. Surf.

UUC: High Veg.

UucC: Car

Figure 6.1: The figure shows qualitative results for an image from the Vaihin-
gen dataset under different settings of UUCs and OSS methods. The proposed
methods and the superpixel post-processing method generates cleaner segmen-
tation, avoiding the usual mislabeling of unknown pixels.


DBD
PUC-Rio - Certificação Digital Nº 1821003/CA


PUC-Rio- CertificagaoDigital N° 1821003/CA

7
Results and Discussion

This chapter presents and discusses the results of each proposed tech-
nique. The subsections show the results starting with the worst results achieved
and ending with the best ones. Each subsection compares its results with all
previously achieved best results (baseline and proposed).

The last section of the chapter presents a qualitative comparison among
the best results for the baseline methods, OpenGMM and CoReSeg. The
qualitative analysis also shows results for the post-processing.

It is worth mentioning that our experimental procedure is not the same
used for OpenPCS by Oliveira et al. (2021) nor the one used for OpenPCS++
by Martinez et al. (2021), therefore all experiments were re-executed to ensure
comparability, and the results presented here are different from the previous
works.

Improving semantic consistency for OSS is the main goal pursued with
this work. The use of attention mechanisms as a strategy to improve semantic
consistency is also tested in this work jointly with all proposed methods as
described in Chapter 4.

All discussed OSS methods use pre-trained closed-set backbones trained
from scratch using the same stochastic batch selection and hyperparameters
described in Chapter 5.

This chapter is organized as follows, Section 7.1 presents the results ob-
tained by the OpenGMM method using all backbones with baseline methods.
Section 7.2 shows the CoReSeg model results compared to OpenGMM and
the baselines. Section 7.3 shows the results achieved with the post-processing
method compared with the versions without post-processing. Finally, Sec-

tion 7.4 evaluates the best qualitative results obtained.

7.1
Quantitative Results for OpenGMM

Tables 7.1 and 7.2 present the achieved AUROC for the open-set pre-
diction for the Vaihingen and the Potsdam datasets using the OpenGMM
method using DN-121 (Huang et al., 2017), WRN-50 (Zagoruyko and Ko-
modakis, 2016) and U-net (Ronneberger et al., 2015) as backbones compared
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UUCs Avg.
BB A Method 0 1 2 3 4 AUROC
DN-121 «+ OpenGMM .90 .84 .62 .50 .81 .735+.167
DN-121 « OpenPCS 89 82 62 54 80 735+ .147
DN-121 « OpenPCS++ 69 65 .64 .61 .72 .663+.046
DN-121 - OpenCMM .85 .87 .64 .70 .71 .754+.010
DN-121 - OpenPCS 84 .87 61 .73 68 747+ .107
DN-121 OpenPCS++ .62 .70 .62 .73 .66 .668+.048

U-net v OpenGMM .84 .74 .62 56 .68 .690+.108
U-net v OpenPCS 81 65 .62 .59 .56 .649+ .097
U-net v OpenPCS++ .59 .57 51 .48 .51 .533+£.045
U-net - OpenGMM .84 .53 64 .71 .55 .654+.129
U-net - OpenPCS 81 50 .67 .74 45 634+ .155
U-net - OpenPCS++ .66 48 .53 .60 .61 .575+.070
WRN-50 ¢ OpenGMM 84 .79 49 51 .79 .686+.170
WRN-50 ¢ OpenPCS 80 .78 .50 .54 .76 677+ .143
WRN-50 ¢ OpenPCS++ .56 .56 .61 .64 .46 .566 £ .071
WRN-50 - OpenGMM .83 .86 .50 .52 .68 .679+.171
WRN-50 - OpenPCS 81 .85 490 .53 .68 .671+.159
WRN-50 - OpenPCS++ 42 .54 .53 .62 .65 .5534.092

Table 7.1: The table presents AUROC results for the Vaihingen dataset with
all UUCs and the Average AUROC between all UUCs. The results are ordered,
in order, by BB column as backbone, A column that indicates the use of the
CBAM attention mechanism, and Average AUROC in descending order. The
UUCs numerical notation stands for 0 - impervious surfaces, 1 - building, 2 -
low vegetation, 3 - high vegetation, and 4 - car. In bold are highlighted the
best AUROC for the combination of Dataset, Backbone, and CBAM usage.

to the baseline methods: OpenPCS and OpenPCS++. The tables also present
results grouped by the usage of the CBAM attention mechanism ordering the
results descending by the average AUROC.
Potsdam: Table 7.2 shows that amongst the tested methods, OpenGMM per-
formed better using U-net and WRN-50 as backbones regardless of the use of
the attention mechanism. In the scenario with DN-121 with CBAM as the
backbone, OpenPCS was better in the average results, even with OpenGMM
presenting better results for three UUCs (impervious surfaces, building, and
car). Using DN-121 without the attention mechanism as the backbone, Open-
PCS++ achieved the best performance. In both cases, OpenGMM was the
second better method. OpenPCS with DN-121 with CBAM attention mecha-
nism achieved the best overall performance for the Potsdam dataset.
Amongst all test scenarios, we observe that different methods performed
better for different UUCs. If UUC was impermeable surfaces OpenGMM
performed better in four tests and OpenPCS in the other two; if UUC was
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UUCs Avg.

BB A Method ——=—5—3—3— AurocC
DN-121 v OpenPCS 7 76 .52 .48 95 .697 +.193
DN-121 v OpenGMM S8 77T .45 45 .95 681 £ .221
DN-121 v OpenPCS++ .52 .71 49 .46 91 .619+.188
DN-121 - OpenPCS++ .67 .69 .54 .64 90 .689+ .134
DN-121 - OpenGMM 720760 .42 .52 .93 .668 +.202
DN-121 - OpenPCS 275 .79 39 .33 .87  .627 4 .247
U-net v OpenGMM ST .74 43 40 .90 650 £ .224
U-net v OpenPCS 70 .70 .46 .38 .87 .625 4 .2000
U-net v OpenPCS++ 56 .69 .36 .43 .69 .553 4 .148
U-net - OpenGMM 81 .72 35 39 .91 .635+ .252
U-net - OpenPCS++ 56 .71 .56 .57 .68 .617 =+ .075
U-net - OpenPCS 7 71 .33 .38 .85 .607 +.236
WRN-50 ¢ OpenGMM .67 .75 36 .38 .91 .613+.239
WRN-50 ¢ OpenPCS 66 74 39 38 90 .612+£.226
WRN-50 v OpenPCS++ .37 .56 .49 .50 .82 .549+ .168
WRN-50 - OpenGMM 66 .76 .30 .47 93 .626 + .246
WRN-50 - OpenPCS 70 .74 .30 44 .93 .623 £ .250
WRN-50 - OpenPCS++ .54 .63 .46 .46 .85 .588+.162

Table 7.2: AUROC results for the Potsdam dataset with all UUCs and the
Average AUROC between all UUCs. The results are ordered, in order, by BB
column as backbone, A column that indicates the use of CBAM attention
mechanism, and Average AUROC in descending order. The UUCs numerical
notation stands for 0 - impervious surfaces, 1 - building, 2 - low vegetation, 3 -
high vegetation, and 4 - car. In bold are highlighted the best AUROC for the
combination of Dataset, Backbone, and CBAM usage.

building, OpenGMM performed better in five test scenarios; if UUC was low
vegetation OpenPCS++ was better in four and OpenPCS in the other two;
when UUC was high vegetation, OpenPCS++ performed better in four test
scenarios and OpenGMM and OpenPCS in one each; and if UUC was car,
OpenGMM was better in five test scenarios and OpenPCS in one.

OpenGMM open-set predictions performed better for 14 individual UUCs
across the test scenarios, OpenPCS++ predictions were better in 9, and
OpenPCS predictions in 7 tests.
Vaihingen: Table 7.1 shows that among the methods tested with all back-
bones, evaluating the average AUROC, OpenGMM performed best in all six
test scenarios. The performance pattern observed for all tested scenarios was
the same, with OpenGMM showing the best performance followed by Open-
PCS and OpenPCS++.

Comparing OpenGMM’s performance between the Vaihingen and the

Potsdam datasets, we observe that OpenGMM performed better on average
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AUROC in all tested scenarios in the first dataset and for the second only in
four out of six.

Comparing individual UUCs for the distinct scenarios, OpenGMM per-
formed better for 15 UUCs, OpenPCS++ in 8, and OpenPCS in 7. For imper-
vious surfaces and building, the OpenGMM performed better in all scenarios,
and for car in five out of six test scenarios. For the vegetation classes as UUC,
OpenPCS and OpenPCS++ performed better.

The use of the Mixture of Gaussians by OpenGMM seems capable of
producing data representations more suitable to model data and identify
OOD pixels as expected. Tables 7.2 and 7.1 present results used as evidence

supporting the assumption.

7.2
Quantitative Results for CoReSeg

The Conditional Reconstruction for Open-set Segmentation model is a
novel end-to-end fully convolutional model proposed in this work. This section
presents the results for CoReSeg compared to the two baseline methods,
OpenPCS and OpenPCS++, and to the OpenGMM method proposed in this

work with its complete results presented in Section 7.1.
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UucCs Avg.
D A Method
1 2 3 4 AUROC

V v CoReSeg+Att .842 .900 .686 .718 .723 .7738 +.0922
V v CoReSeg .886 .770 .688 .738 .627 .7418 4+.0971
V. v OpenGMM 842 738 .622 561 .685 .6896 4 .1080
V v OpenPCS 812 .652 .621 595 .563  .6486 4+ .0970
V. v OpenPCS++ 590 .571 .507 .485 513 .5332+ .0449
V - CoReSeg .880 .817 .680 .658 .676 .7422+ .0999
V - OpenGMM 841 527 641 712 547  .6536 £ .1285
V - OpenPCS 815 493 672 .737 455 .6344 £+ .1555
V. -  OpenPCS++ 656 476 .533 .600 .609 .5748 + .0705
P v CoReSeg+Att .749 .876 .646 .544 772 .7174+ .1268
P v OpenGMM 73 744 432 397 .904  .6500 £ .2236
P v OpenPCS 704 704 460 .384 874  .6252 %+ .1999
P v OpenPCS++ 586 .692 .365 435 .688 .5532 4 .1482

Table 7.3: In this table, the U-net is fixed and the A columns indicate if the
backbone uses the CBAM attention mechanism within the U-net. In bold are
the best results for each combination of the dataset and the use of the CBAM
attention mechanism within the backbone. The UUCs number stands for 0 -
impervious surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation; and
4 - car. The D column stands for the datasets with “V" for the Vaihingen and
"P" for the Potsdam dataset.

The ablation study performed over the Vaihingen dataset and presented
in Chapter 6 has its best results compiled and compared with the achieved
results for the Potsdam dataset using the model and backbone selected after
the ablation.

The configuration that performed best in ablation was the formulation
of CoReSeg with the CBAM attention mechanism added to the reconstruction
block and to the U-net backbone (Section 4.2), called CoReSeg+Att.

We present the results in two sequential blocks. The first one shows all
results using the same backbone in Table 7.3. Comparing the results of the
methods using the same close-set backbone is fairer since they all used the
same closed-set output to identify the OOD pixels. Then CoReSeg+Att will
be compared to the best results obtained by all combinations of method and
backbone in Section 7.1.

CoReSeg uses only the U-net and its variation with attention as the
backbones. Table 7.3 shows only results using U-net as the backbone. When
comparing the methods using the same closed-set backbone CoReSeg+Att
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achieved the best overall performance with much stabler results for both
Vaihingen and Potsdam datasets.

We tested CoReSeg using U-net+Att and U-net, and CoReSeg+Att for
the Vaihingen dataset. The CoReSeg+Att method achieved better results
than the other methods with the same backbone, and the three variations
of CoReSeg achieved the best three overall results. Table 7.3 shows in bold the
best AUROC results for each closed-set backbone used.

Evaluating individual UUC results in Table 7.3, CoReSeg and CoRe-
Seg+Att also performed best in 12 UUCs of the 15 UUCs possible, 5 for each
of the three tested scenarios.

In all comparisons, including Vaihingen and Potsdam, the CoReSeg
method performed better than the other methods by a large AUROC margin
between 0.0674 and 0.0886 compared to OpenGMM. The greatest difference
obtained for Vaihingen used U-net and CoReSeg without the CBAM attention
mechanism.

For all three tested scenarios with the same closed-set backbone, Open-
PCS was the best-performing baseline method. Since OpenGMM overper-
formed the baseline methods, the performance gain achieved by CoReSeg us-
ing the U-net was even better if compared to the best baseline method results.
Comparing the best CoReSeg result with the best OpenPCS result for each
scenario the AUROC gap observed was between 0.0922 and 0.1252. For the
Vaihingen dataset, CoReSeg improved baseline AUROC results by 19,30% and
by 14,75% for the Potsdam dataset.

The second block presented in Table 7.4 shows the CoReSeg method and
its variations compared with the best results for the baseline methods and
OpenGMM regardless of the closed-set backbone.

For the methods without the use of attention in the backbone,
OpenGMM overperformed OpenPCS and CoReSeg for Vaihingen by 0.0114
AUROC, equivalent to 1.54%.

Comparing the models with the use of attention in the backbone, CoRe-
Seg+Att achieved the best overall AUROC performance for the Vaihingen
dataset by 0.0386, and for the Potsdam dataset by 0.0200, the relative gain
was 5.25% and 2.89% respectively. CoReSeg+Att improved results even when
compared to other methods using closed-set backbones that performed much

better compared to the U-net as shown in Table 7.3.
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UUCs Avg.

D B A Method

1 2 3 4 AUROC
V U v CoReSeg+Att .842 .900 .686 .718 .723 .77/ +.092
V. U ¢ CoReSeg 886 770 .688 .738 .627 .742+ .097
V. D v OpenGMM 900 .845 .621 502 .808 .735+.167
V. D v OpenPCS 894 820  .622 541 796  .735 £ .147
V. D v OpenPCS++ .694 .647 .638 .611 .725 .663 £ .046
V. D - OpenGMM 851 .866 .641 .697 .713 .754+.100
V. D - OpenPCS 842 .866 .614 .733 .678 .747+.107
V. U - CoReSeg .880 .817 .680 .658 .676 .742+.100
V. D -  OpenPCS++ 618 .703 .625 .729 .663 .668 + .048
P U ¢ CoReSeg+Att .749 .876 .646 .544 .772 717+ .127
P D v OpenPCS J71 763 525 481 947 697 + .193
P D v OpenGMM 783 773 448 455 .948 .681 + .221
P D v OpenPCS++ 520 .712 492 463 .907 .619+ .188

Table 7.4: The table shows the best results for the combination of the method,
the use of attention in the backbone, and the dataset. The B column indicates
the best performing backbone: “U" for U-net, “D" for DN-121, and W for
WRN-50. The UUCs number stands for 0 - impervious surfaces; 1 - building; 2
- low vegetation; 3 - high vegetation; and 4 - car. For the D columns “V" stands
for the Vaihingen and “P" for the Potsdam dataset. The A column indicates
the use of the CBAM attention mechanism in the backbone. The best results
are in bold for each combination of the dataset and the use of the attention
mechanism within the backbone, and the best average result for each dataset
is in italic.

In both presented comparisons, CoReSeg+Att overperformed other
methods and backbones in five out of six scenarios. The only scenario in which
CoReSeg was not the best, OpenGMM, the other proposed method of this
work, performed best. For both tested datasets, CoReSeg+Att obtained the
best overall results.

Table 7.4 shows the CoReSeg method and its variations compared with
the best results for the baseline methods and OpenGMM regardless of the
closed-set backbone. CoReSeg+Att (U-net+Att) achieved the best overall
AUROC performance for Vaihingen by 0.0386 and for Potsdam by 0.0200.

Without the CBAM attention mechanism, OpenGMM and OpenPCS
overperformed CoReSeg for the Vaihingen dataset by 0.0114 AUROC. CoRe-
Seg+Att improved results even when compared to methods using other closed-
set backbones.

In both presented comparisons, CoReSeg overperformed the other meth-


DBD
PUC-Rio - Certificação Digital Nº 1821003/CA


PUC-Rio- CertificagaoDigital N° 1821003/CA

Chapter 7. Results and Discussion 93

Vaihingen Potsdam
Ave. Post-processing Post-processing
AUROC Base FuSC SPS Base FusSC SPS
all 1 14 6 0 10 9
> 0.6 0 13 5 0 9
> 0.7 0 9 1 0 2 1

Table 7.5: A scoreboard of the OSS best AUROC results shows which per-
formed better in 3 distinct conditions: counting all scenarios, counting only

scenarios with AUROC greater than 0.6, and counting only scenarios with
AUROC greater than 0.7.

ods and backbones in five out of six scenarios. In the only scenario in which
CoReSeg was not better, OpenGMM performed best. For both tested datasets,
CoReSeg+Att obtained the best overall results.

7.3
Quantitative Results with Post-processing

This section presents the best post-processing results compared to results
obtained without post-processing. Tables B.1 to B.40 in Appendix B presents
the complete set of obtained results.

For Vaihingen, we executed twenty-one test scenarios combining distinct
methods, backbone, and use of the CBAM attention mechanism (denoted by
the suffix +Att), and for Potsdam a total of nineteen scenarios.

For each scenario, we tested eleven superpixel configurations. Four tested
configurations used FuSC, and seven used a single superpixel generation
algorithm. In this section, we also compare the average results for FuSC and
Single SPS for each of the forty scenarios.

Tables 7.7 to 7.12 presents the baseline results compared to the best and
worst post-processing results for both datasets.

Tables 7.5 and 7.6 show scoreboards comparing the overall results for
post-processing with baseline. These tables show how many test scenarios each
proposed strategy performed best.

For all results evaluated together, the proposed post-processing procedure
improved the quantitative results for 39 in 40 of the tested scenarios. We
could observe that the better the base result for the open-set segmentation,
the better the improvement obtained. In the same direction, post-processing
baseline results with better semantic consistency produced better open-set
segmentations.

CoReSeg produces open-set segmentations with fewer artifacts and better

semantic consistency compared to OpenPCS, OpenPCS++, and OpenGMM.
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Vaihingen Potsdam
Ave. Post-processing Post-processing
AUROC Base FuSC SPS Base FusSC SPS
all 1 18 2 2 15 2
> 0.6 0 16 2 1 14 0
> 0.7 0 7 0 0 1 0

Table 7.6: The table shows a scoreboard comparing the average of FuSC and
Single SPS configurations. The table presents the score of each superpixel
strategy that performed better in 3 distinct conditions: counting all scenarios,
counting only scenarios with AUROC greater than 0.6, and counting only
scenarios with AUROC greater than 0.7.

Therefore, post-processing CoReSeg achieved the greatest AUROC improve-
ments, and when using the CBAM attention mechanism the improvement was
even greater. This result suggests that attention mechanisms may play an im-
portant role in open-set segmentation studies.

The results worsened after post-processing only when the segmentation
method was the OpenPCS++ method with U-net+Att as the backbone. In
this scenario, the baseline average AUROC was 0.5332. An AUROC value of
0.5 ranks a random positive sample higher than an aleatory negative sample
half the time. The classification/segmentation, in this case, is not informative,
and one can say that its predictive ability is likely random guessing.

Results may suggest that open-set segmentations with better semantic
consistency and higher AUROC may benefit more from post-processing. The
highest pixel count defines the semantic class for each superpixel. Thus,
misclassified pixels within well-defined and correctly classified objects are
corrected.

Table 7.5 shows that the post-processing improved the AUROC results
for thirty-nine out of forty total baseline results, with FuSC producing the best
results for twenty-four tested scenarios.

Table 7.6 shows the scoreboard of the average results of all FuSC and
Single SPS configurations compared to baseline scenarios. This comparison
suggests that the performance achieved by FuSC varies less and delivers a bet-
ter segmentation on average when compared to the Single SPS configurations.
This observed behavior corroborates the ablation observation that FuSC pro-
duced closer results than Single SPS. FuSC produced closer final results even
with very distinct hyperparameters, suggesting that the hyperparameter selec-
tion is less relevant when using FuSC.

We should highlight that individual superpixel algorithm configurations

used as input for FuSC produce larger superpixels on average than the ones
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produced by single SPS configurations. Even though the observed performance
of FuSC was consistently better, suggesting that the merge procedure can
produce more reliable superpixels to represent the objects in the image.

Using the average values presented in Table 7.6, FuSC produced better
results for thirty-three of the forty different tested scenarios. The baseline result
was better in three scenarios and the Single SPS algorithms in four. Post-
processing using FuSC produces better results on average than using Single
SPS.

The results of post-processing using FuSC stands out as an even better
option with segmentations with high AUROC values. FuSC seems to benefit
from higher AUROC value segmentations. FuSC produces all the best results
with AUROC greater than 0.7, and the great majority in other threshold
scenarios.

To corroborate the apparent greater stability and reliability of the
post-processing results using FuSC, we can compare the standard deviations
between the means of FuSC and Single SPS. The standard deviations of the
FuSC averages are smaller in most cases, as can be seen in Tables 7.13 to 7.18.

For the Vaihingen dataset segmented using the DN-121 as the backbone,
only post-processing OpenGMM worsen the results in Table 7.7. Using U-
net as the backbone, Table 7.8 shows two scenarios that the post-processing
could deteriorate the results depending on the configurations and the only case
that the post-processing could not improve the results with any configuration.
With the use of WRN-50 as the backbone presented in Table 7.9 we can see
the two scenarios that the choice of superpixel configuration could deteriorate
the result.

As the AUROC results for the Potsdam dataset with DN-121 as the
backbone presented in Table 7.10 are lower and only in one tested scenario
the post-processing improved the results for all configurations. Using U-net
(Table 7.11) and WRN-50 (Table 7.12) as the backbone the same behavior
identified for DN-121 repeated and in only one tested scenario the post-
processing could improve results for all configurations.

Post-processing better base open-set segmentations with FuSC performed
better as observed before in this section. Post-processing base open-set seg-
mentations with lower AUROC values with single SPS or FuSC showed mixed
results, and the configurations of single SPS performed better in some scenar-

10s.
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UUCs Ave. SPS
A Method o e AUROC config.
T OpenGMM 87 87 65 72 73 767+ .100 fz_slic02
~ OpenGMM 84 85 .63 .72 73 754+ .001 04

T OpenGMM 85 87 64 70 71 754+ .100 -

- OpenPCS 87 88 .62 .76 .69 .764 4+ .112 fz_quick04
- OpenPCS 85 .86 .62 .76 .70 .7574.101 {fz04
OpenPCS 84 87 .61 .73 .68 747+ .107 -

- OpenPCS++4 64 .72 .63 .75 .67 .6824.053 fz quick04
- OpenPCS++ 63 .70 .62 .75 .66 .672+.053 fz04
OpenPCS++ .62 .70 .62 .73 .66 .668 £ .048 -
OpenGMM 91 86 .64 .50 .83 747+ .173 fz_ quick04

OpenPCS++ .72 .66 .65 .63 .73 .678 +£.048 fz_quick04
OpenPCS++ .69 .63 .63 .62 .74 .663 +.053 f{z04
OpenPCS++ .69 .65 .64 .61 .72 .663 4+ .046 -

v

v OpenGMM 90 84 62 .50 81 .735+£.167 -

v OpenGMM 89 .83 .62 .50 .82 .7344.166 {z04

v OpenPCS 92 84 64 54 82 7524 .156 fz_ quick04
v OpenPCS 89 81 .63 b3 83 .740+.152 {704

v OpenPCS 89 82 62 54 80 .735£.147 -

v

v

v

Table 7.7: The table shows the AUROC results for the base open-set prediction
obtained by combining DN-121 with or without attention to the method for
the Vaihingen dataset. Each backbone-method pair compares the performance
of the base open-set prediction with the best and the worst post-processing
configuration results. The UUCs number stands for 0 - impervious surfaces; 1 -
building; 2 - low vegetation; 3 - high vegetation; and 4 - car. The A (attention)
column indicates if the backbone uses the CBAM attention mechanism as
presented in section 5.1.


DBD
PUC-Rio - Certificação Digital Nº 1821003/CA


PUC-Rio- CertificagaoDigital N° 1821003/CA

Chapter 7. Results and Discussion 97

UUCs Avg. SPS

A Method (5 —5—3— 1 AUROC config.

- CoReSeg 92 85 .68 .688 .71 .769+.107 fz quick04

- CoReSeg 89 84 .65 .67 .71 .751+.106 fz04

- CoReSeg 88 .82 .68 .66 .68 .742+.100 -

- OpenGMM 88 b2 66 .71 .55 .663 & .144 {z02

- OpenGMM .84 53 64 .71 Db 654+ .128 -

- OpenGMM 87 b3 64 .70 .52 .652 4 .145 quick02

- OpenPCS 86 .48 .69 .75 .45 645+ .177 {202

- OpenPCS 81 .49 .67 .74 45 .634+.155 -

- OpenPCS 85 48 67 .74 42 634+ .180 quick02

- OpenPCS++ .70 47 53 .60 .62 .585+.091 fz_slicO2

- OpenPCS++ 69 47 .53 .60 .61 .579+.083 slic06

- OpenPCS++4+ 66 48 .53 .60 .61 .575+.070 -

v CoReSeg 91 81 .72 .79 .65 .777+£.097 fz_quick04

v CoReSeg 87 81 .70 .77 .64 .758 £.089 {z04

v CoReSeg 89 77T 69 .74 .63 7424+ .097 -

v CoReSeg+Att .87 94 .73 .75 .79 .815+.086 fz quick04

v CoReSeg+Att .83 93 .72 .70 .79 .795+.089 fz04

v CoReSeg+Att .84 .90 .69 .72 .72 .774+.092 -

v OpenGMM 88 .74 .63 .59 .72 .T13+.112 f{z04

v OpenGMM 86 .74 .63 .57 .69 .698 £ .112 slic06

v OpenGMM 84 .74 62 .56 .68 .690+.108 -

v OpenPCS .86 .67 .63 .63 .59 .675+.106 fz04

v OpenPCS 83 .66 .63 .60 .Bb5 .656+.107 slic06

v OpenPCS 81 .65 .62 .59 .56 .649 +.097 -

v OpenPCS++ .59 .57 .51 48 .51 .533+.045 -

v OpenPCS++ .59 .57 .50 48 .52 .532+.047 fz_ slic04

v OpenPCS++ 57 56 49 48 .51 .523+.042 fz04

Table 7.8: The table shows the AUROC for the base open-set prediction
obtained by the combination of U-net with or without attention to the
method for the Vaihingen dataset. Each backbone-method pair compares the
performance of the base open-set prediction with the best and the worst post-
processing configuration results. The UUCs number stands for 0 - impervious
surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation; and 4 - car.
The A (attention) column indicates if the backbone uses the CBAM attention
mechanism as presented in section 5.1.
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UUCs Avg. SPS

A Method o e AUROC config.

- OpenGMM 87 .88 52 .52 .72 702+ .177 fz quick04

- OpenGMM 87 .88 .51 .52 .68 .693 £ .183 quick02

- OpenGMM .83 .86 B0 .52 .68 .679+.171 -

- OpenPCS 84 86 .51 .55 .70 .693 +.161 fz_quick04

- OpenPCS 83 .86 .50 .54 .69 .684+.163 slicO6
OpenPCS 81 .8 49 .53 .68 .671+.159 -

- OpenPCS++ .41 55 .52 .65 .66 .556+ .103 fz_ quick02
OpenPCS++ 42 54 .53 .62 .65 .5534+.092 -

- OpenPCS++ .39 .53 .53 .59 .65 .540+.096 fz04

v OpenGMM 87 81 53 53 83 .713+.169 fz quick04

v OpenGMM .86 81 51 .52 82 .702+£.173 slic06

v OpenGMM 84 80 49 .51 .79 .686+.170 -

v OpenPCS 81 .79 54 59 82 711+ .133 fz04

v OpenPCS 82 .80 .52 .55 .80 .697 £ .148 slic06

v OpenPCS 80 .78 .50 .54 76 677 £.143 -

v OpenPCS++4+ .55 .56 .60 .66 .50 .5724.058 quick02

v OpenPCS++ .56 .56 .61 .64 .46 .566+.071 -

v OpenPCS++ .54 .53 .60 .65 .47 .558+.070 {z04

Table 7.9: The table shows the AUROC for the base open-set prediction
obtained by the combination of WRN-50 with or without attention to the
method for the Vaihingen dataset. Each backbone-method pair compares the
performance of the base open-set prediction with the best and the worst post-
processing configuration results. The UUCs number stands for 0 - impervious
surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation; and 4 - car.
The A (attention) column indicates if the backbone uses the CBAM attention
mechanism as presented in section 5.1.
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UUCs Ave. SPS
A Method 3ot a ARG config.
T OpenGMM 75 77 41 52 .93 677+ .200 06

T OpenGMM 72 76 42 52 93 668+ .205 -

T OpenGMM 63 78 .36 49 87 626 L.200 04

- OpenPCS 7 796 .38 .33 .87 .630 £ .253  quick02
- OpenPCS S50 .79 39 .33 87 6274 .247 -
- OpenPCS 54 796 .38 .35 .88 589 £ .239 fz04

- OpenPCS++ .75 .74 52 .66 .91 .7164.140 {206
- OpenPCS++ 67 .69 54 .64 .90 .686+.131 -
OpenPCS++ .696 .66 .50 .60 .87 .666+.133 {£z04

OpenPCS++ 55 .76 .46 .45 .93 .632+.209 {z06
OpenPCS++ 54 .75 41 .50 .90 .621+.199 {z04
OpenPCS++ 52 .71 49 46 .91 .619+£.188 -

v OpenGMM 80 .80 .45 .46 .95 .691 £ .227 fz quickO4
v OpenGMM 78 7 .45 45 95 681 £ .221 -

v OpenGMM .69 .79 41 45 .89 .646 & .208 {z04

v OpenPCS .79 78 b2 48 .95 706 £ .200 fz_ quick04
v OpenPCS 7760 52 .48 95 697 £.193 -

v OpenPCS .68 7 .46 .47 .89 .656 £ .189 fz04

v

v

v

Table 7.10: The table shows the AUROC for the base open-set prediction
obtained by the combination of DN-121 with or without attention to the
method for the Potsdam dataset. Each backbone-method pair compares the
performance of the base open-set prediction with the best and the worst post-
processing configuration results. The UUCs number stands for 0 - impervious
surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation; and 4 - car.
The A (attention) column indicates if the backbone uses the CBAM attention
mechanism as presented in section 5.1.
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UUCs Avg. SPS
A Method (e AURGC config.
- OpenGMM 84 .75 34 .39 .93 .649+ .267  fz_ slic02
- OpenGMM 81 .72 35 .39 91 .635+£.252 -
- OpenGMM 472 32 41 87 .610+£.237  {z04
- OpenPCS 80 .73 .32 .38 .88 .625+4.257  fz_slicO2
- OpenPCS 7 71 .33 .38 .85 .607 +.236 -
- OpenPCS 70 .73 .29 42 84 596 £ .230  {z04
- OpenPCS++4+ 58 .76 .56 .58 .72 .640+.092 fz_slic02
- OpenPCS++4+ 56 .71 .56 .57 .68 .617+.0746 -
- OpenPCS++ .55 .75 .45 .57 .67 .5b98 £ .117 {z04
v CoReSeg+Att .77 .89 .67 .55 .82 .7414+.112 fz quick04
v CoReSeg+Att .75 88 .65 b4 77 7174+ .127 -
v CoReSeg+Att .64 .87 .58 .50 .79 .676+.150 f{z04
v OpenGMM 84 .75 43 40 .92 .669 £ .237  {z04
v OpenGMM 774 43 .40 90 .650 £.224 -
v OpenGMM 76 .72 45 43 88 .649£.199  {z04
v OpenPCS 80 .71 44 .39 .89 .640 +.222  fz04
v OpenPCS 70 .70 46 .38 .87 .620+ .200 -
v OpenPCS 74 .69 .40 .40 .85 .619+.207 fz04
v OpenPCS++ .64 .73 .34 .44 .72 574+ .175 f{z04
v OpenPCS++ .61 .71 .35 .42 .72 .562+.154  slic06
v OpenPCS++4+ 59 69 .36 43 .69 .552+.148 -

Table 7.11: The table shows the AUROC for the base open-set prediction
obtained by the combination of U-net with or without attention to the
method for the Potsdam dataset. Each backbone-method pair compares the
performance of the base open-set prediction with the best and the worst post-
processing configuration results. The UUCs number stands for 0 - impervious
surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation; and 4 - car.
The A (attention) column indicates if the backbone uses the CBAM attention
mechanism as presented in section 5.1.
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UUCs Avg. SPS

A Method 4 e AUROC config.
- OpenGMM 67 .80 .30 .47 .95 .639+ .261 fz_slicO2
- OpenGMM 66 .76 .30 .47 .93 626+ .246 -
- OpenGMM 57799 .30 .46 .89 .605+ .242 fz04
- OpenPCS 7279 28 45 .95 .640 £+ .268 fz  quick04
- OpenPCS 70 .74 30 .44 .93 6224 .250 -
- OpenPCS 61 .79 .29 47 .89 .601 & .240 fz04
- OpenPCS++ 58 .69 .47 46 .91 .6224+.184 f{z04
- OpenPCS++ 55 66 .46 .46 .91 .608+ .186 slic06
- OpenPCS++ 54 63 46 .46 .85 .588+.162 -
v OpenGMM 69 .78 .35 .38 .93 .6254 .252 fz slic02
v OpenGMM 67 75 .36 .38 .91 .613+.239 -
v OpenGMM b8 76 .33 .39 .86 .586G £ .228 fz04
v OpenPCS 67 77 .36 .38 .92 .622 4 .245 fz_ slic02
v OpenPCS 66 .74 .39 .38 .90 .6124.226 -
v OpenPCS 56 .77 .33 .40 .86 .584 + .226 {z04
v OpenPCS++ 43 .60 47 .51 .81 .563+.151 fz04
v OpenPCS++ 37 .56 .49 .50 .82 .5494+ .168 -
v OpenPCS++ 31 .63 .41 .48 .86 .5384.210 fz04

Table 7.12: The table shows the AUROC for the base open-set prediction
obtained by the combination of WRN-50 with or without attention to the
method for the Potsdam dataset. Each backbone-method pair compares the
performance of the base open-set prediction with the best and the worst post-
processing configuration results. The UUCs number stands for 0 - impervious
surfaces; 1 - building; 2 - low vegetation; 3 - high vegetation; and 4 - car.
The A (attention) column indicates if the backbone uses the CBAM attention
mechanism as presented in section 5.1.
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7.4
Qualitative Results

Let’s assess CoReSeg’s composition of the conditioned reconstruction’s
minimum error for each UUC scenario with the sample presented in Figure 7.1.
The figure indicates the scenario in the columns, and in the rows, from up to
bottom, the input image, the ground truth with UUC in red, the closed-set
prediction, the four conditioned reconstruction errors, and the minimum error
in the last row. The darker shades of gray indicate smaller reconstruction error
values.

Impervious surfaces conditioning reconstruction error row shows that for
all four conditioned scenarios the reconstruction of the impervious surfaces
areas are darker and therefore produced smaller reconstruction error values.
The similarity between impervious surfaces and building confounded the
reconstruction notably when low wvegetation is the UUC. Also, the presence
of shadows has a remarkable impact when reconstructing the images.

For the building conditioning reconstruction error row, in all scenarios,
the wegetation and car classes are poorly reconstructed, and the building
and impervious surfaces show smaller reconstruction error values. Shadows
play a relevant role in this scenario as observed in the impervious surfaces
reconstruction error row.

The high vegetation conditioning reconstruction error row produced
smaller reconstruction error values when conditioning impervious surfaces,
building, and low wegetation as UUC. With the car as UUC, the model
produced a mildly conditioned reconstruction, with high error values inside
a continuous area of the high vegetation and low error values at the borders.

The low wvegetation conditioning reconstruction error row produced low
error values to all vegetation and shadow areas, except when building is the
UUC with high error value areas for some high vegetation and shadow areas.

The car conditioning reconstruction error row produced high error values
for most of the pixels. It could reconstruct the car class objects with building
and low vegetation as UUC, but in the other cases, the conditioning failed to
deliver low reconstruction error values for the car class objects.

Analyzing all reconstructions, the presence of shadows may tamper the
final result. The vegetation classes can mislead the reconstruction model,
possibly due to its intra-class and inter-class variability. The morphological
and color similarities also interfere with the reconstruction process, producing
equally good or poor-quality reconstructions of similar classes.

The dataset is highly unbalanced, and the car class has few pixels

compared to others. The stochastic training adopted is sensitive to unbalanced
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uuc:
Impervious
Surfaces

uucC: UUC: High UUC: Low uUucC:
Building Vegetation  Vegetation Car

Input

Ground
Truth

Closed-set
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]

High i Impervious
Vegetation Building Surfaces
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Error reconstructing conditioned by each KKC
Vegetation

Car
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Figure 7.1: From up to bottom, the figure shows the input image, the ground
truth with the UUC in red, the closed-set prediction, the four conditioned
reconstruction error images, and the computed minimum error image. The
crossed circle indicates that the reconstruction is not conditioned to that class
since it is the UUC. Each column of the figure shows a distinct UUC scenario
produced using the LOCO protocol. The used colors are: white for impervious
surfaces; dark blue for building; light blue for low wvegetation; green for high
vegetation; yellow for car; and red for the UUC. Also, the darker the pixel, the
smaller the error.
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data, as while training, the model could see little or no data of the class with
fewer pixels.

The minimum error row shows the final composition using all conditioned
reconstruction error values produced during the conditioning. The resultant
reconstruction error values used to identify the OOD pixels use the lower error
values for each pixel found among all reconstructions computing the minimum
reconstruction error.

The minimum reconstruction error computed for impervious sufaces and
building as UUC shows higher reconstruction error values (lighter shades
of gray) for areas of impervious sufaces, building, and some areas of high
vegetation. The presence of shadows tampers the reconstruction producing
mixed error values in continuous regions.

The areas of high vegetation as UUC are better reconstructed and showed
lower error values than the other classes’ areas. However, for low vegetation as
UUC, the reconstruction mixed the vegetation areas and poorly reconstructed
the areas with shadows and cars.

With car as UUC, the minimum reconstruction error showed higher error
values for the areas with cars and some objects’ borders. The expected behavior
for this scenario. In this case, the closed-set and reconstruction models trained
with the classes with more pixels and much less unbalanced, producing the
expected poorer reconstructions for the car class.

Models trained in all scenarios could not condition the reconstruction
with car class and produce well-conditioned reconstructions. Conditioning the
reconstruction by the car class tampers the computation of the final minimum
reconstruction error, making the error value higher and the OOD identification
less effective. Higher reconstruction error values for car class areas in all
scenarios indicate that the trained models could not learn good representations
for this class. Besides that, CoReSeg presented better results compared to the
baseline methods.

Even struggling to learn good representations and properly conditionally
reconstruct the images in some scenarios, Figures 7.2 and 7.3 present the
produced open-set predictions by the proposed OpenGMM and CoReSeg
compared to the baseline method OpenPCS.

Both Figures 7.2 and 7.3 use the same structure. Each row shows a
distinct emulated open-set scenario using the LOCO protocol. The columns
of both figures show, from left to right, the input image, the ground truth,
the three methods OpenPCS, OpenGMM, and CoReSeg in that order, and for
each method, the raw predictions and the post-processed predictions. The red

color represents the OOD pixels, white for impervious surfaces; dark blue for
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building; light blue for low vegetation; green for high vegetation; and yellow for
car.

Figures 7.2 and 7.3 present the best-achieved results for each method
among all tested post-processing configurations for all three and backbones for
OpenPCS and OpenGMM.

Figure 7.2 presents the predictions for the Vaihingen dataset. OpenPCS
and OpenGMM achieved the best results using DN-121 (Section 5.1) as the
backbone for the Vaihingen dataset. CoReSeg using the CBAM attention
mechanism and U-net+Att (Section 5.1) as the backbone achieved the best
results. The post-processing configurations (Section 5.5) with the best AUROC
results presented used fz_ quick04 configuration for OpenPCS, fz_ slic02 for
OpenGMM; and fz_ quick04 for CoReSeg+Att.

Comparing the achieved results of the methods without post-processing,
Figure 7.2 shows improvement of OpenGMM over OpenPCS. A comparison of
qualitative results between OpenGMM and OpenPCS shows more preserved
edges and fewer artifacts in open-set prediction, even with close quantitative
results.

A noticeable improvement is visible comparing CoReSeg+Att with the
first two methods for the Vaihingen dataset. CoReSeg results are cleaner with
small-sized artifacts, and borders are better preserved making objects easier
to delimit and observe. It is less common to find a big block of pixels wrongly
classified.

Post-processing qualitative results noticeably improved the open-set pre-
diction quality. Comparing the post-processed results with the base prediction
for each method shows that the post-processing could drastically reduce ar-
tifacts and preserve edges. The delimitation of the natural objects is more
observable, and the open-set prediction is more consistent with the ground
truth quantitative and qualitatively.

The base open-set prediction produced by CoReSeg+Att already showed
smaller artifacts and better edge delineation. Therefore, the improvement in

post-processing prediction was more apparent compared to that obtained with
OpenPCS and OpenGMM.
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DN-121 - PCS DN-121 - GMM CoReSeg+Att
Image Ground Truth w/o Superpixels w/ Superpixel w/o Superpixels w/ Superpixel w/o Superpixels w/ Superpixel
s QTR T TN T A R~ B %

UUC: imp. Surf.

UUC: high vegetation UUC: low vegetation UUC: building

UUC: car

Figure 7.2: The figure shows the open-set segmentation predictions obtained
using the best hyperparameter configuration for OpenPCS, OpenGMM, and
CoReSeg+Att for one test image of the Vaihingen dataset with all tested
UUCs. Also, results with and without post-processing are presented on the
right of the base prediction. The exhibited SPS configuration used for post-
processing is the best one for each method on average. The used colors
are: white for impervious surfaces; dark blue for building; light blue for low
vegetation; green for high vegetation; yellow for car; and red for the OOD
pixels.

Figure 7.3 presents the open-set predictions for the Potsdam dataset.
OpenPCS and OpenGMM methods achieved the best results using DN-
121+ Att (Section 5.1) as the backbone for the Potsdam dataset. CoReSeg+Att
which uses the CBAM attention mechanism and U-net+Att as the backbone
obtained the best results. The post-processing fz_ quick04 configuration (Sec-
tion 5.5) got the best AUROC results with all methods.

The quality of the closed-set backbones segmentation prediction ob-
tained for Potsdam is worse than the closed-set predictions for Vaihingen (Sec-
tion 5.1). According to Vendramini et al. (2021), the quality of the closed-set
segmentation relates to the quality of the open-set prediction. Producing better

closed-set segmentation predictions imply in better open-set predictions.
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Closed-set predictions for the Potsdam dataset using U-net and U-
net+Att presented worse semantic segmentation and quantitative results com-
pared to the other backbones.

Despite U-net+Att’s lack of semantic consistency, Figure 7.3 shows that
CoReSeg+Att managed to achieve the best results. CoReSeg+Att open-set
predictions show better-preserved borders and have fewer artifacts. Also, for all
methods, the post-processing presented the same consistent behavior observed
for Vaihingen and improved the base results in all cases.

DN-121+Att - PCS DN-121+Att - GMM U-net+Att - CoReSeg+Att

Image Ground Truth w/o Superpixels w/ Superpixel w/o Superpixels w/ Superpixel w/o Superpixels w/ Superpixel

e

uuc:
imp. Surf.

uuc: uuc:

tion low

9

uuc:

high

ar

uuc:
c:

Figure 7.3: The figure shows the open-set segmentation predictions obtained
using the best hyperparameter configuration for OpenPCS, OpenGMM, and
CoReSeg+Att for one test image of the Potsdam dataset with all tested UUCs.
Also, results with and without post-processing are presented on the right of
the base prediction. The exhibited SPS configuration used for post-processing
is the best one for each method on average. The used colors are: white for
impervious surfaces; dark blue for building; light blue for low vegetation; green
for high vegetation; yellow for car; and red for the OOD pixels.
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Conclusion and Future Work

This work proposed and described two distinct methods for open-set
semantic segmentation: OpenGMM as an extension of a known baseline
method called OpenPCS (Oliveira et al., 2021) and a novel end-to-end fully
convolutional model called CoReSeg (Nunes et al., 2022b). Besides that, this
work proposed a general post-processing technique with a new superpixel
merging procedure called FuSC.

To answer the three research questions proposed in Section 1.2, we
performed exploratory tests on remote sensing image datasets (Section 5.3)
and extensive quantitative and qualitative experimental evaluation comparing
the proposed approaches with established literature baselines.

The two proposed methods for OSS improved the baseline results and
showed better semantic consistency. Output scores of four distinct OSS meth-
ods - OpenPCS (Oliveira et al., 2021), OpenPCS++ (Martinez et al., 2021),
OpenGMM, and CoReSeg - were post-processed using FuSC producing a re-
fined open-set prediction that consistently improved the quantitative results
and semantic consistency.

The proposed OpenGMM method improved the results for all six tested
scenarios in the Vaihingen dataset and four out of six tested scenarios for the
Potsdam dataset compared to baseline results. Complete results in Appendix B
and compiled results in Section 7.1 present pieces of evidence that validate the
proposal of OpenGMM as the answer for RQ;. We attribute the improvement
shown by OpenGMM over OpenPCS and OpenPCS++ to its multimodal
modeling capability for real-world data. The worse results in Potsdam are
attributed mainly to OpenGMM’s poorer performances on two UUCs: Low
Vegetation and High Vegetation. For the two scenarios in that OpenGMM did
not improve the results, the backbone used was DN-121 with and without the
CBAM attention mechanism suggesting that DN-121 pre-trained backbones
could not produce a good representation for Low and High Vegetation classes
as UUC. It is worth mentioning that previous works already identified the
instability of OSS algorithms in these two particular classes, possibly due to
the large semantic intra-class variabilities (Oliveira et al., 2021; Vendramini
et al., 2021).
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CoReSeg covers the second research question RQs with its compiled re-
sults presented in Section 7.2 validating that assumption. CoReSeg was tested
exclusively with U-net as the backbone with or without the CBAM attention
mechanism. Due to the computational cost, we tested only CoReSeg+Att with
U-net+Att for the Potsdam dataset. For the Vaihingen dataset, we also per-
formed the CoReSeg variations with the CBAM attention mechanism used as
part of the backbone and the model itself.

For the Potsdam dataset, CoReSeg+Att average improvement using U-
net+Att as backbone was 0.0674 AUROC, which is a 10.37% improvement over
the OpenGMM method results, and 0.0922 AUROC or 14.74% improvement
over OpenPCS baseline result.

For the Vaihingen dataset, the results obtained by CoReSeg and its varia-
tions using the same backbone compared to OpenGMM showed improvements
on average results between 0.0522 (7.57%) and 0.0886 (13.55%) AUROC. Com-
paring CoReSeg’s best average results with the best baseline method resulted
in a higher AUROC between 0.0932 (14.37%) and 0.1252 (19.30%). Compar-
ing OSS methods under the same backbone is fairer and allows us to evaluate
CoReSeg’s prediction improvement over the baseline methods.

Among all methods, CoReSeg+Att performed better even with the not-
so-fair comparison among its quantitative results with the best-performing
combinations of other methods and backbone. In the comparison presented
in Table 7.4 in Section 7.2, CoReSeg+Att outperformed OpenGMM in 0.0202
AUROC (2.68%) and OpenPCS in 0.0272 AUROC (3.64%) for the Vaihingen
dataset. For the Potsdam dataset, CoReSeg+Att outperformed OpenPCS at
0.0200 AUROC (2.87%) and OpenGMM at 0.0360 AUROC (5.28%).

Qualitative results for CoReSeg (Section 7.4) showed a reduction of
artifacts, better border preservation, and improved object delimitation or
identification. In short, the open-set predictions produced by CoReSeg are
more consistent and closer to ground truths.

Segmentation artifacts and ill-defined borders and objects are common
issues in all tested OSS methods, both baseline and proposed. We proposed
general superpixel post-processing in conjunction with the FuSC to answer the
third research question RQj3. The post-processing produces refined open-set
predictions with more semantic consistency and closer to the ground truths.
Results presented in Section 7.3 corroborate the proposal as an answer to R Qs.

Appendix B presents the results for all forty test scenarios with eleven
distinct post-processing configurations used to evaluate the possible impact
of the post-processing on final results. The performed tests showed that

post-processing improved results in thirty-nine of the forty performed tests
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and improved the results coupled with all tested methods. The size of the
superpixels tampers with the quality of the results. In the only test case
in which the post-processed results got worse, the superpixels were large to
represent the underlying image.

For the Vaihingen dataset, post-processing produced improvements of
0.0408 AUROC (5,03%) when applied to CoReSeg+Att. For the Potsdam
dataset, the largest post-processing improvement produced was over Open-
PCS++ with WRN-50 as the backbone, 0.0360 AUROC (6.12%). Post-
processed predictions reduce the identified issues and produced segmentations
with more semantic consistency.

Defining the best superpixel algorithm and calibrating its hyperparame-
ters is difficult and time-consuming. Superpixels’ ability to represent the un-
derlying image varies immensely with the selected hyperparameters. FuSC
combines distinct superpixel algorithm outputs producing a final superpixel
segmentation capable of representing the underlying image. Results suggest
that FuSC final segmentation is a better representation than each individual
input segmentation.

Post-processing using FuSC produced more consistent and stabler results,
varying less among the different tested configurations. Suggesting that FuSC is
less sensitive to hyperparameter selection, the final results for FuSC performed
better on average than individual superpixel algorithms. Within the final
results, post-processing with FuSC configuration produced the best overall
results.

Essentially, we proposed one distinct approach to handle each identified
research question. OpenGMM extended the base OpenPCS framework and
achieved better results showing that it was possible to improve the state-of-
the-art results for the datasets. A remarkable characteristic of OpenGMM is
that, like OpenPCS, it could be adapted effortlessly into new backbones and
frameworks.

CoReSeg established new state-of-the-art results for both datasets. Using
the CBAM attention mechanism coupled CoReSeg allowed the method to
improve its performance by roughly 4%. To the author’s knowledge, CoReSeg
is the first fully convolutional end-to-end method used to perform open-set
segmentation in remote sensing images in literature.

As a final relevant collateral contribution of this work, we propose a
novel taxonomy (Nunes et al., 2022a) to Open-set Recognition and Semantic
Segmentation aiming to organize the literature and provide an understanding
of the theoretical trends that guided the existing approaches that may influence

future methods.
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It is worth mentioning that Appendix C lists the articles published as
results of this research. The appendix also lists the articles in progress or

already submitted.

8.1
Limitations Found and Future Work

The proposed approaches could benefit from using different backbones
adapting to other imaging datasets and domains. The proposed OSS methods
could also segment time-series datasets. During this work, we tried some
variations of the proposed techniques with little success.

We tried to use CoReSeg with two rural time-series datasets. We tried
to pile the bands of all timestamps and handle the time-series datasets
with a standard convolutional network. The first step for CoReSeg is to
train the backbone, but closed-set results using the U-net were much lower
than the baseline results (Martinez et al., 2021). In addition to the poor
performance obtained by closed-set methods, during training of CoReSeg
conditional reconstruction, we observed an issue due to CoReSeg stochastic
batch and patch selection. The contrastive reconstruction training could not
find enough overlapping areas with distinct closed-set classes due to the
sparseness of the datasets.

The attempt to handle time-series datasets as convolutional image
datasets seemed to be inadequate and the preliminary results were much worse
than the baseline presented by Martinez et al. (2021). Likely, a model designed
to handle time-series datasets works better. In this sense, CoReSeg could be
modified to properly handle time-series datasets.

We also tried to use CoReSeg in a sparse urban dataset. In this exper-
iment, CoReSeg performed better than in the time-series experiments, but
CoReSeg’s results could not match baseline results (Oliveira et al., 2021). In
this case, we attribute the bad result to the U-net backbone that had many
issues across all presented results. Adapting new closed-set backbones to work
with CoReSeg may address the identified performance issues. Sparse datasets
are more challenging for architectures like CoReSeg, requiring different strate-
gies to be studied to deal with this type of data.

For OpenGMM, we tried to adapt HRNet Wang et al. (2020) with no
success. All achieved results were worse than the ones obtained with the
presented backbones. Adapting new backbones is needed to understand what
characteristics are relevant to improve the models for OSS.

This work presents results for the Vaihingen and the Potsdam datasets.

The used datasets are urban, densely labeled, and share the same set of
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KKCs with the same available bands. The images have high definition and are
from highly organized cities. Future works must extend the model to segment

datasets with distinct characteristics.
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A
Fusing Superpixels for Semantic Consistency - Code

Listing A.1 provides the complete code used for FuSC, implemented
in Python 3.8. The comments detail the functioning of the method and the
algorithmic complexity using big O notation.

The official implementation of all proposed approaches is available at

https://github.com/iannunes.

import scipy as sp

from scipy.spatial import distance

# method used to merge two different superpixel segmentations.
# s1 and s2: a 2D array mapping the superpixel segmentations.
Each pixel in the represented in the segmentation array is
set with the number of the respective segment
img: the segmented image
min_size: the minimum size threshold for the merged
segmentation
def join_segmentations(sl, s2, img, min_size): #0(n)
assert sl.shape == s2.shape
counter = -1
ret = np.zeros(sl.shape, dtype=int)
final_ labels = {}

# merges two different segmentations. setting sequential
labels to each intersection between sl and s2
for i in range(0, sl1.shape[0]): # 0(n) - assuming
constant time for dict operations
for j in range(0, sl1.shapel[1]):
labell s1[i,j]
label?2 s2[i,j]
if labell not in final labels:
final labels[labell]={}
if label2 not in finmal_ labels[labell]:
final_ labels[labell][label2] = counter
counter —-=
ret[i,jl=final_labels[labell][label2]

ret = -1 * ret
counter = -1 * counter

existing_ areas={}
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# ensure connectivity for each segment. 0(n)
for i in range(0, ret.shape[0]):
for j in range(O0, ret.shapel[1]):
label = retl[i,j]
if label>O0:
if label in existing_areas:
ret [ret==1label] = counter
# all operations are 0(n) in the worst case
when all labels must be replaced. This case is actually
unfeasible.
label = counter
counter + 1
existing_areas[label]=True
ret = track_continuos(ret, i, j, label)
# all operations are 0(9n) in the worst case
when all labels must be replaced. This case is actually

unfeasible.

ret = -1 * ret
neighbors = {}
# get the neighborhood for each segment
for i in range (0, ret.shape[0]): # 0(n)
for j in range(0, ret.shapel[1l]):
labell = retl[i,j]
if labell not in neighbors:
neighbors[labell]={}

for k in range(i-1,i+2): # cte
for h in range(j-1,j+2):
if (k==h and k==0) or (k<0 or h<0 or k>=ret
.shape[0] or h>=ret.shapel[1]):

continue

label2 = retl[k,hl]
if labell != label2:
if label2 not in neighbors:
neighbors [label2]={}
neighbors[labell] [label2]=True
neighbors[label2] [labell]l=True

return merge_superpixels(ret, neighbors, img, min_size)

# main procedure that merges neighboring areas if the minimum
pixel count is not respected.
# sps: the 2D mapping superpixel segmentation

# neighbors: a list of each segment and its neighbors
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Appendix A. Fusing Superpixels for Semantic Consistency - Code 132

# img: the segmented image

# min_size: the minimum size threshold for the merged
segmentation

def merge_superpixels(sps, neighbors, img, min_size):

# the complexity for the procedure is 30(n)+ 0(n * cte *
minimum size”2) + 20(n) = 0(n * minimum size~2). As some
assumed constants depend on the minimum size, we can say
that the procedure is pseudo-polynomial.

sps_sizes={}
img = np.array(img, dtype = float)
sps_uniques = np.unique(sps, return_counts = True) # 0(n)

sps_processed = {}

flatten_superpixels = {}

# pixel count
for i in range(0,len(sps_uniques[0])): # 0(n)

sps_sizes[sps_uniques[0][i]] = sps_uniques[1][i]

# populate a dictionary with image pixels for each segment
for i in range (0, sps.shapel[0]): # 0(n)
for j in range (0, sps.shapel[1]):
label = spsl[i,j]
if label not in flatten_superpixels:
flatten_superpixels[label] = []
flatten_superpixels[label].append(imgl[i,j])

for key in flatten_superpixels:
flatten_superpixels[key] = np.array(flatten_superpixels
[keyl)

sps_mapping = OrderedDict ()

# for each segment with less pixels of minimum pixel count
# compare to all neighbors and merge with closest one
for key in flatten_superpixels:

# 0(n) as superpixel segmentation is an over
segmentation of the image, the expected number of segments
is n/cte implying in O0(n/cte) = 0(n) executions of the for
loop

if key in sps_mapping:

continue

while sps_sizes[key] < min_size:

min_dist = 99999999999999999
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Appendix A. Fusing Superpixels for Semantic Consistency - Code 133

final_smaller_key = -1

final _bigger_key = -1

# closest neighbor search

for n_key in neighbors [key]:

# worst case scenario is n/2 iterations - 0(n)

# assuming that superpixel segmentations produces
segments approximately with the same pixel count. And
assuming the maximum number of possible neighbors for each
segment , the number of iterations are 2 x minimum size + 6.

We can consider as O(ctex*min_size) = 0 (cte)

if n_key in sps_mapping:
continue
smaller _sps_label = n_key
bigger _sps_label = key
if flatten_superpixels[key].shape[0] < flatten_
superpixels [n_key].shape [0]:
smaller_sps_label = key
bigger sps_label = n_key

if final_smaller_key < O:
final smaller_key = smaller_sps_label

final _bigger_key = bigger_ sps_1label

x = flatten_ superpixels[smaller_sps_label]

data = flatten_superpixels[bigger sps_label]

# computes the distance between the 2 segments

dist = mahalanobis(x = np.mean(x,axis = 0),
data = data)

# the complexity of mahalanobis is the greatest

between 0((d**4)*((log d)**2)) and 0(n*(d**2)), for n the
number of elements in the biggest segment and d the number
of features.

# in our particular case, we have few features
and the probable number of elements in the segment is ctex*
minimum size. The final complexity for our case is the
greatest between 0((ctex*4)x*((log cte)**x2)) and 0((ctex*

minimum size)*(cte**2)) = 0(minimum size)

if min_dist > dist:
min_dist = dist
final smaller_key = smaller_sps_label

final _bigger_key = bigger_ sps_1label

# create the merging mapping. In the end, the
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Appendix A. Fusing Superpixels for Semantic Consistency - Code 134

mapping is executed to produces the final segmentation. 0(
cte)
sps_mapping[final_ smaller _key] = final_bigger_key
# compute the size of the merged segment. O(cte)
sps_sizes[final _bigger_key] = sps_sizes[final_

smaller key] + sps_sizes[final _ bigger _key]

for n_key in neighbors[final_ smaller_key]:
# as discussed before, the probable case is 0(2
*min_size) = 0(cte)
if final_smaller_key in neighbors[n_key]:
del neighbors[n_key] [final_smaller_key]
neighbors[final_bigger _key] [n_keyl=True

if final_smaller_key in neighbors[final_bigger _key

1:
del neighbors[final_bigger key] [final_ smaller _
key]
if final_bigger_key in neighbors[final_bigger_key]:
del neighbors[final_bigger_key][final _bigger_
key]
key = final_bigger _ key
sps = merge_mapped(sps, sps_mapping) #0(number of pixels)
sps = relabel(sps) #0 (number of pixels)

return sps

# auxiliary function to execute the relabel according to the
intersection between the segmentations
# sps: the 2D mapping superpixel segmentation
# sps_mapping: a list maping merged superpixels
def merge_mapped(sps, sps_mapping): # 0(number of pixels)
for i in range (0, sps.shape[0]):
for j in range(0, sps.shape[1]):
label = spsl[i,j]
while label in sps_mapping:
sps[i,j] = sps_mappingl[labell
label=sps[i,j]

return sps

# ensure that numbered lables are between 1 and n
# sps: the 2D mapping superpixel segmentation
def relabel(sps): # O(number of pixels)

counter = -1
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Appendix A. Fusing Superpixels for Semantic Consistency - Code 135

for i in range (0, sps.shapel[0]):
for j in range(O0, sps.shapel[1]):
label = spsl[i,j]
if label<O:
continue
sps [sps==1abel] = counter
counter -= 1

return sps*-1

# recursive procedure that selects a continuous area and
relabel it

def track_continuos(input_array, i, j, label, rec=False):
if input_array([i, j] != label:

return input_array

input_array[i, j] = input_array[i, jlx-1
for k in range(i-1,i+2):
for h in range(j-1,j+2):

if (k==h and k==0) or (k<0 or h<0 or k>=input_array

.shape [0] or h>=input_array.shape[1]):
continue

input_array = track_continuos (input_array, k, h,

label, rec=True)

return input_array

# compute the mahalanobis distance between the 2 distributions.
# x: image pixels of a superpixel
# data: image pixels of a superpixel
# cov: pre calculated covariance matrix
def mahalanobis (x=None, data=None, cov=None):
# 0((n*x4)*((log n)**2)) or O0(N*(n*x*2))
"""Compute the Mahalanobis Distance between each row of x
and the data
bd : vector or matrix of data with, say, p columns.
data : ndarray of the distribution from which Mahalanobis
distance of each observation of x is to be computed.
cov : covariance matrix (p x p) of the distribution. If
None, will be computed from data.
o
# N = number of data points in data

# n number of features in data

Xx_minus_mu = x - np.mean(data,axis=0)
if not cov:
cov = np.cov(data.T) # 0O(N*(n*x*2))
inv_covmat = sp.linalg.inv(cov) # 0((n**4)*((log n)**2))

left_term = np.dot(x_minus_mu, inv_covmat) # 0(n)
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m = np.dot(left_term, x_minus_mu.T)
if type (m) is np.float64:
return m

return m.diagonal ()

136

Listing A.1: FuSC implementation.
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Complete Experimental Results

This appendix presents tables B.1 to B.40 with the complete set of results
obtained during the performed tests for this work. Results presented in this
appendix were used to compile all tables showed in in Chapter 7.

Each table shows one of the forty distinct test scenarios combining
backbone, method, and dataset. For each tested scenario, twelve results are
listed. The first line is the base results produced by the method and backbone
without post-processing. The next lines present the results of the eleven
distinct post-processing configurations selected in Chapter 6.

The notation +Att as the suffix of the name of the method or the
backbone indicates the use of the CBAM attention mechanism as presented in
Chapter 4 and Section 5.1.
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Publication Status

Section 3.1 (“A Systematic Mapping of Open-set Segmentation in Visual
Learning”) has already been presented at the SIBGRAPI. As a result of the
previous publication, Computer & Graphics, published by Elsevier, invited the

authors to write an extended version of the article.

— Reference: Nunes, I.; Oliveira, H.; Pereira, M. B.; Santos, J. A.;
Poggi, M. “Deep Open-Set Segmentation in Visual Learn-
ing”. In: Conference on Graphics, Patterns and Images, 35. (SIB-
GRAPI), 2022, Natal, RN. Proceedings... 2022. On-line. IBIL:
8JMKD3MGPEW34M/47TMJCTH. Available from: http://urlib.

net/ibi/8JMKD3MGPEW34M/47MJCTH.

Section 4.2 (“Conditional Reconstruction for Open-set Semantic Segmen-

tation”) has already been presented at the ICIP.

— Reference: I. Nunes, M. B. Pereira, H. Oliveira, J. A. dos Santos and M.
Poggi, “Conditional Reconstruction for Open-Set Semantic Seg-

mentation” 2022 IEEE International Conference on Image Processing
(ICIP), 2022, pp. 946-950, doi: 10.1109/ICIP46576.2022.9897407.

The method described in section 4.1 (“Open Gaussian Mixture of Mod-
els’) and the post-processing described in section 4.3 (“Improving Semantic
Consistency with Superpixels”) have been submitted to a journal and are cur-

rently under review.
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