$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: REDES DE GRAFOS SEMÂNTICOS COM ATENÇÃO E DECOMPOSIÇÃO DE TENSORES PARA VISÃO COMPUTACIONAL E COMPUTAÇÃO GRÁFICA
Autor: LUIZ JOSE SCHIRMER SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  HELIO CORTES VIEIRA LOPES - ORIENTADOR
LUIZ CARLOS PACHECO RODRIGUES VELHO - COORIENTADOR

Nº do Conteudo: 53529
Catalogação:  02/07/2021 Liberação: 02/07/2021 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53529&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53529&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.53529

Resumo:
Nesta tese, propomos novas arquiteturas para redes neurais profundas utlizando métodos de atenção e álgebra multilinear para aumentar seu desempenho. Também exploramos convoluções em grafos e suas particularidades. Nos concentramos aqui em problemas relacionados à estimativa de pose em tempo real. A estimativa de pose é um problema desafiador em visão computacional com muitas aplicações reais em áreas como realidade aumentada, realidade virtual, animação por computador e reconstrução de cenas 3D. Normalmente, o problema a ser abordado envolve estimar a pose humana 2D ou 3D, ou seja, as partes do corpo de pessoas em imagens ou vídeos, bem como seu posicionamento e estrutura. Diveros trabalhos buscam atingir alta precisão usando arquiteturas baseadas em redes neurais de convolução convencionais; no entanto, erros causados por oclusão e motion blur não são incomuns, e ainda esses modelos são computacionalmente pesados para aplicações em tempo real. Exploramos diferentes arquiteturas para melhorar o tempo de processamento destas redes e, como resultado, propomos dois novos modelos de rede neural para estimativa de pose 2D e 3D. Também apresentamos uma nova arquitetura para redes de atenção em grafos chamada de atenção em grafos semânticos.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui