
Luiz José Schirmer Silva

Semantic graph attention networks and tensor
decompositions for computer vision and

computer graphics

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor : Prof. Hélio Côrtes Vieira Lopes
Co-advisor: Prof. Luiz Carlos Pacheco Rodrigues Velho

Rio de Janeiro
February 2021

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Luiz José Schirmer Silva

Semantic graph attention networks and tensor
decompositions for computer vision and

computer graphics

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
Examination Committee.

Prof. Hélio Côrtes Vieira Lopes
Advisor

Departamento de Informática – PUC-Rio

Prof. Luiz Carlos Pacheco Rodrigues Velho
Co-advisor

Visgraf – IMPA

Prof. Marcus Vinicius Soledade Poggi de Aragão
Departamento de Informática – PUC-Rio

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Prof. Davi Geiger
New York University

Prof. Joaquim Armando Pires Jorge
Instituto Superior Técnico de Lisboa

Prof. Leandro Moraes Valle Cruz
Process Systems Enterprise/Siemens

Rio de Janeiro, February 8th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



All rights reserved.

Luiz José Schirmer Silva
Bachelor’s in Computer Science (2014) at the Federal Univer-
sity of Santa Maria (UFSM). Masters’ in Informatics (2016)
at PUC-Rio with emphasis on Computer Graphics. Wor-
ked for the Applied Computing Laboratory (LaCA-UFSM)
from 2011 to 2014 and Tecgraf/PUC-Rio from 2014 to 2017
in the Reservoir visualization group. Since 2017, works at
GALGOS/ATD-Lab, at PUC-Rio.

Bibliographic data
Schirmer Silva, Luiz José

Semantic graph attention networks and tensor decompo-
sitions for computer vision and computer graphics / Luiz José
Schirmer Silva; advisor: Hélio Côrtes Vieira Lopes; co-advisor:
Luiz Carlos Pacheco Rodrigues Velho. – Rio de janeiro: PUC-
Rio, Departamento de Informática, 2021.

v., 101 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Redes Neurais de convolução. 2. Pose estimation. 3.
Modelos de atenção. 4. Decomposição de Tensores. 5. Redes
neurais para Grafos. 6. Aplicações em tempo real. I. Lopes,
Hélio Côrtes Vieira. II. Velho, Luiz. III. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Informática. IV.
Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Acknowledgments

To my lovely wife, Letícia Fausto, for all support and patience. I will never
be able to repay you fully; all I can give you is my eternal love and friendship.
To my parents, José Luiz and Gilka, for the care, support, friendship, and
unconditional love. You have my eternal thanks.

To prof. Hélio Lopes and prof. Luiz "Oldman" Velho. You guided me on
the path to the good side of the force: computer graphics, mathematics, and
art. Thank you for the help and advice. If I have arrived here today, it was
because of your counsels and helped me along the way. Also, thanks for all the
learning and patience!

To Djalma, the "DJ Soul," for all the help and the hilarious moments at
IMPA. Certainly, without your help, this work would not be possible. Also,
you are a great dancer!

To my brother and sister of a different mother, Guilherme Schardong
and Josyane Almeida, for the support and counsels! I will never forget the
hard times and hilarious moments when we share the apartment.

To my friends Renan Spencer and Gabi Dias for the support, counsels
and memes. J’espère que vous vé débrouillez bien en France! Also, thank you
Renan for always helping me when my boat was sinking!

To Captain Fabrício Cardoso, Leonardo Campagnolo and Abner Cardoso
for the “Halo nights” on Saturdays, the counsels and talks. Oh, I almost forgot!
Thanks, Fabrício, for the real Açaí from Pará that gave me the energy to
complete this challenge!

To my friends from Rio de Janeiro, in special to Jonatas and Julia
Grossman and Georges Spyrides and Helen.

To my friends from the Rio Grande do Sul, Laisla, Aline, and Lidiane.
Although you don’t really understand what I was doing, you always supported
it.

To the VISGRAF Lab at IMPA and all the crazy mathematicians that I
met there. Computer Graphics is about math and a lot of passion!

To GALGOS Lab, DAS Lab, and all the crazy lunatics that I met while
working in PUC-Rio. This journey would certainly be boring without you
people.

To Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) for partially financing this research under grant 153737/2014-0.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Abstract

Schirmer Silva, Luiz José; Lopes, Hélio Côrtes Vieira (Advisor); Ve-
lho, Luiz (Co-Advisor). Semantic graph attention networks and
tensor decompositions for computer vision and computer
graphics. Rio de Janeiro, 2021. 101p. Tese de doutorado – Depar-
tamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

This thesis proposes new architectures for deep neural networks with
attention enhancement and multilinear algebra methods to increase their
performance. We also explore graph convolutions and their particularities.
We focus here on the problems related to real-time pose estimation. Pose
estimation is a challenging problem in computer vision with many real ap-
plications in areas including augmented reality, virtual reality, computer
animation, and 3D scene reconstruction. Usually, the problem to be addres-
sed involves estimating the 2D and 3D human pose, i.e., the anatomical
keypoints or body “parts” of persons in images or videos. Several papers
propose approaches to achieve high accuracy using architectures based on
conventional convolution neural networks; however, mistakes caused by oc-
clusion and motion blur are not uncommon, and those models are com-
putationally very intensive for real-time applications. We explore different
architectures to improve processing time, and, as a result, we propose two
novel neural network models for 2D and 3D pose estimation. We also in-
troduce a new architecture for Graph attention networks called Semantic
Graph Attention.

Keywords
Convolutional Neural Networks; Pose estimation; Attention models;

Tensor Decomposition; Graph neural networks; Real time applications;

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Resumo

Schirmer Silva, Luiz José; Lopes, Hélio Côrtes Vieira; Velho, Luiz.
Redes de grafos semânticos com atenção e decomposição
de tensores para visão computacional e computação gráfica.
Rio de Janeiro, 2021. 101p. Tese de Doutorado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Nesta tese, propomos novas arquiteturas para redes neurais profun-
das utlizando métodos de atenção e álgebra multilinear para aumentar seu
desempenho. Também exploramos convoluções em grafos e suas particula-
ridades. Nos concentramos aqui em problemas relacionados à estimativa de
pose em tempo real. A estimativa de pose é um problema desafiador em
visão computacional com muitas aplicações reais em áreas como realidade
aumentada, realidade virtual, animação por computador e reconstrução de
cenas 3D. Normalmente, o problema a ser abordado envolve estimar a pose
humana 2D ou 3D, ou seja, as "partes" do corpo de pessoas em imagens ou
vídeos, bem como seu posicionamento e estrutura. Diveros trabalhos bus-
cam atingir alta precisão usando arquiteturas baseadas em redes neurais de
convolução convencionais; no entanto, erros causados por oclusão e motion
blur não são incomuns, e ainda esses modelos são computacionalmente pe-
sados para aplicações em tempo real. Exploramos diferentes arquiteturas
para melhorar o tempo de processamento destas redes e, como resultado,
propomos dois novos modelos de rede neural para estimativa de pose 2D e
3D. Também apresentamos uma nova arquitetura para redes de atenção em
grafos chamada de atenção em grafos semânticos.

Palavras-chave
Redes Neurais de convolução; Pose estimation; Modelos de atenção;

Decomposição de Tensores; Redes neurais para Grafos; Aplicações em tempo
real;

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Table of contents

1 Introduction 15

2 Related Work 19
2.1 Convolutional Neural Networks 19
2.2 Attention in Neural Networks 20
2.3 Graph Neural Networks 20
2.4 Pose Machines and Tracking 22
2.5 3D Pose Estimation 24
2.6 Motion Capture 26

3 Tensor Decomposition 28
3.1 Matrix Decomposition 28
3.2 Tensor Properties 31
3.3 Kruskal form of a Tensor 34
3.4 Hadamard Product 34
3.5 Kronecker Product 34
3.6 Khatri-Rao Product 34
3.7 Tucker Decomposition 35

4 Neural Network Architectures for 2D Pose estimation 39
4.1 2D Pose Estimation Model 39
4.2 2D Partially Decomposed Model 41
4.3 Fully Decomposed Model 49
4.4 Attention block 50
4.5 Factorized Convolutions 52
4.6 Proposed Architecture and Experimental details 52
4.7 Architecture 52
4.8 Training 53
4.9 Experiments with partially decomposed network 53
4.10 Experiments with fully decomposed network 58

5 3D human pose estimation 62
5.1 Graph Convolutional Networks 62
5.2 Attention block for Semantic Graph Convolutions 64
5.3 3D neural network for pose estimation and Computer Animation

Framework 65
5.4 Experimental Results 68
5.4.1 Datasets 68
5.4.2 Camera Calibration 69
5.4.3 2D to 3D keypoints 70
5.4.4 Ablation Study and Network evaluation 71
5.4.5 Qualitative results 74

6 Realtime Applications 77

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



6.1 Archictecture for realtime applications 77
6.2 Virtual enviroment communication by Holojam 79
6.3 Holojam Node 80
6.4 Holojam Protocol 80
6.5 Holojam Objects 80
6.6 Holojam SDK 82
6.7 Holojam and realtime applications 82
6.8 3D Human Digitization 86

7 Conclusion 89

Bibliography 91

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



List of figures

Figure 1.1 An example of our 3D human pose algorithm with a
single RGB camera. The 2D data is captured with our 2D pose
machine and after processed by the 3D neural network. It can
be used in applications such as computer animation and game
controlling. 18

Figure 2.1 Graph Attention Networks. (velivckovic2017) 21
Figure 2.2 Heatmap detections in Wei et al. (wei2016) 23
Figure 2.3 PAFs and body points dectection by Cao et al. (cao2017) 24
Figure 2.4 3D Human Pose Machine with Self-supervised Learning

by Wang et al. (wang2019) 25
Figure 2.5 Model proposed by Mehta et al.(mehta2017) in the Vnect

project 25
Figure 2.6 Model proposed by Mehta et al.(mehta2020) as an

evolution of the Vnect project. 26
Figure 2.7 Model proposed by Tung et al. (tung2017) presenting an

optimization architecture for neural network and a differentiable
rendering pipeline. 27

Figure 3.1 Spearman’s hypothesis for intelligence factor analysis. 29
Figure 3.2 A rank-1 mode-3 tensor. 33
Figure 3.3 Truncated form of HOSVD (kolda2009) 36
Figure 3.4 HOSVD applied to a volumetric data fromMRI. The first

Figure show the orignal data, the second the data reconstructed
after a decomposition using target rank values of 50 and in
the third Figure, target rank values of 10. The error between
the original data and the approximations was 0.09 and 0.25
respectively. Also, the decomposition highly reduce the space
needed to store the data, were it was by half in the second
image and by 1/3 in the third. 37

Figure 4.1 2D pose estimation example. 42
Figure 4.2 Precison and Recall considering different configurations

for decomposed stages. 45
Figure 4.3 Floating Operations per second performed by each ver-

sion of decomposed models. 45
Figure 4.4 Number of Parameters of each version of decomposed

models. 46

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Figure 4.5 TensorPose CNN model. The initial features were ex-
tracted using the first 12 layers of a Mobilenet V2 and in the
intermediary layers we replace conventional convolutions by a
block containing a pointwise convolution, regular but with re-
duced space and another pointwise convolution. We have more
layers of convolution but the number of operations and weights
is smaller, which leads to a boost in performance. At the final
of each stage the results are concatenated with the results of
feature extraction from Mobilenet to refine the results. 47

Figure 4.6 Results containing viewpoint variation and occlusion,
which are common characteristics in images. Images from
COCO dataset, Rio Olympics 2016 and Brazilian National Bas-
ketball league. 48

Figure 4.7 In our CNN model, we have 3 blocks containing two
convolutional layers and an attention block 49

Figure 4.8 The attention block used in our architecture. Here we
first process spatial attention operations before the channel-wise. 51

Figure 4.9 Comparison of between the OpenPose model and ours.
The first Figure is generated by the OpenPose and the second
by our model. As we can see, our model is slightly less accurate
than the original work and fails to find the exactly position of
a body joint in particular cases. Although due to the nature of
our application, this issue can be considered acceptable. Image
from COCO dataset. 55

Figure 4.10 Precision and Recall for all OKS thresholds. AreaRng
is related to the area of the objects annotated with size bigger
than 322 pixels. 56

Figure 4.11 Comparison between the OpenPose model and ours. The
first Figure (left) is generated by the OpenPose and the second
by our model (right). As we can see, our model is slightly less
accurate than the original work in particular cases, considering
the exact position of a keypoint. Although, OpenPose presents a
confusion between semantically similar parts of different persons
in this frame. Also, our model do not consider all the feet
keypoints. 60

Figure 4.12 Results containing viewpoint variation and occlusion,
which are common characteristics in images. Images from
COCO dataset. 61

Figure 5.1 Motion Capture using 3D pose estimation neural network
for Computer animation. 62

Figure 5.2 Our framework for 3D human pose estimation and com-
puter animation. Here we capture 2D keypoints e interactively
regress it to a 3D domain. After we generate 3D motion files
and 3D animations in Blender. 65

Figure 5.3 Our model for the neural network to estimate the 3D
keypoints. Note that we have here 2 internal blocks that uses
semantic graph structures followed by an attention block. Also,
at the end of each internal block we also have a residual operation. 66

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Figure 5.4 Examples of 3D animations crated with our frame-
work.We generate a BVH to provide the captured data, where
it can be used for standalone animation or in commercial soft-
wares.As we can see here these example were created with the
Human3.6 dataset. (ionescu2013) 68

Figure 5.5 Visual results of our method on in-the-wild images from
COCO dataset (lin2014) . In most cases, our technique can
effectively predict 3d joints in different situations. Small errors
can be seen considering the image scale and camera projection.
In the last row, in an example with self-occlusion, our model
cannot predict data from incomplete data. 75

Figure 5.6 Visual results of our method on Human3.6M
(ionescu2013). As we can see, our method is robust but still has
minor issues considering joint rotations. As we said before, our
model focus only on project the human keypoints in a 3D space. 76

Figure 6.1 TensorPose Architecture 78
Figure 6.2 Holojam Architecture 82
Figure 6.3 TensorPose network infrastructure. The Relay compo-

nent is responsible for synchronizing and sending information
over the network to the clients of our applications. 83

Figure 6.4 Unity3D application with TensorPose. One of our use
cases is the development of applications that make use of shared
virtual environments. 85

Figure 6.5 TensorPose web test. 85
Figure 6.6 DensePose process to extract the texture atlas

(alp2018densepose). 87
Figure 6.7 3D reconstructed models. Here we apply the texture

captured in the first step over the mesh gerenerated by the second. 88

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



List of tables

Table 4.1 Precision and Recall for OpenPose and TensorPose Models. 54
Table 4.2 Total of correct predictions and errors considering the

COCO validation dataset in percentage. We compare our tech-
nique with OpenPose. 56

Table 4.3 The frequency of localization errors over all the predicted
keypoints. We have 62790 joints detected in 5000 images with
this test. 57

Table 4.4 CNN processing time for OpenPose 1.3 and TensorPose.
We vary the scale of the image tested by a factor of 0.5
considering 4 image scales. 57

Table 4.5 Frame rate comparison between the OpenPose 1.3 and
TensorPose.As we can see, our model surpasses in approximately
3x the performance of the OpenPose model used as base. 58

Table 4.6 CNN processing time for OpenPose and our Model. We
vary the scale of the input tested by a factor of 0.5 considering
4 image scales. We do this only for the network input, the final
result is scaled in the original image size. 59

Table 4.7 CNN processing time for OpenPose and our Model in CPU. 59
Table 4.8 Precision and Recall for AlphaPose, OpenPose and our

model. 59

Table 5.1 3D pose regression errors and the parameter numbers of
our networks with different settings on Human3.6M. 71

Table 5.2 3D pose regression errors with different inputs. We use
2D ground-truth from Human3.6M and 2D predictions from
a CPM. We compare our results with the stage 2 output of
the state-of-the-art (mehta2020). The MPJPE metric for Xnect
where obtained from the original paper. 71

Table 5.3 Evaluation of our parameters for the 3D pose estimation
model. The error is computing in the testing dataset. As we can
see, our best configuration has approximately 41% fewer param-
eters than the baseline achieving the state-of-art performance 72

Table 5.4 Results under Protocol 1 on Human3.6M (no rigid align-
ment in post-processing). Note that in average our model sur-
passes the previous state-of-the-art approach. The results of all
approaches are obtained from the original papers. 73

Table 5.5 Results of protocol 2 on Human3.6M under rigid align-
ment in post-processing. Note that in most cases, our model
surpasses the previous works. The results of all approaches are
obtained from the original papers. 73

Table 5.6 Comparison on the single person MPI-INF-3DHP dataset.
Top part are methods designed and trained for single-person
capture.The Xnect is multi-person method, however we evaluate
only single person predictions. 73

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



List of abreviations

CNN – Convolution Neural Networks
CPM – Convolutional Pose Machines
GAT – Graph attention Network
GCN - Graph Convolutional Networks
SGAT – Semantic Graph Attention
GPU – Graphics Processing Unity
FCL – Fully Connected Network
HMR – Human Mesh Recovery
SE-NET – Squeeze and excitation Networks
SVD – Singular Value Decomposition
HOSVD – High Order Singular Value Decomposition
VBMF – Variational Bayesian Matrix Factorization
PAF – Part Affinity Fields
KLT – Kanade Lucas Tomasi Algorithm
OKS – Object Keypoint Similarity
COCO – Common Objects in Context
MPJPE – Mean Per-Joint Position Error
P-MPJPE – Mean per-joint position error after rigid alignment

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Vencemos! Com dificuldade! Não tínhamos a
mesma velocidade, mas tínhamos o coração.

Zagalo, Final de Copa América de Futebol, 1997.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



1
Introduction

In this thesis, we propose new architectures for deep neural networks with
attention enhancement and multilinear algebra methods for increase their
performance. We also explore graph convolutions and its particularities. We
focus here in the problems related to real time pose estimation.

Pose estimation is a challenging problem in computer vision with many
real applications in areas including augmented reality, virtual reality, computer
animation and 3D scene reconstruction (ranjan2019, sindagi2018, ge2018,
schwarcz2018, lin2017). Usually, the problem to be addressed involves esti-
mating the 2D human pose, i.e., the anatomical keypoints or body “parts”
of persons in images or videos(cao2017). Recent works have presented great
results for multi-person pose estimation in images, but still, have some issues
when considering videos (luo2018). These approaches can achieve high accu-
racy using architectures based on conventional convolution neural networks;
however, mistakes caused by occlusion and motion blur are not uncommon,
and those models are computationally very intensive for real-time applications
(luo2018, lin2017). Also, despite some related work to increase performance,
few papers explore the use of temporal coherence and the possibility of using
such machine learning models for real-time applications involving animation
(mehta2017).

OpenPose is considered the state-of-art approach on multi-person pose
estimation, but it does not achieve the desired performance in terms of frames
per second, which make it difficult to use in interactive applications that require
frame rates close to or above 30 FPS, even in high end GPUs.

OpenPose is an evolution of convolutional Pose Machines, which is a fully
convolutional neural network. Also, there is evidence that a key feature behind
the success of these methods is over-parameterization. It could help in finding
a good local minimum, however it also leads to a large amount of redundancy
(kossaifi2019). Furthermore, models with a larger number of parameters have
increased storage and are computationally intensive. Several papers focus on
improving the efficiency of CNNs using tensor decompositions. Most of them
consider each layer independently, where the kernel of a convolutional layer
can be seen as a 4-dimensional matrix and decomposed in a set of low-rank

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 1. Introduction 16

approximations. On the other hand, we have hand-crafted decomposition meth-
ods that use pointwise and depthwise convolutions to improve performance,
such as the Mobilenets (howard2017, sandler2018).

Another weakness of convolutional neural networks is that convolution
operations consider only local neighborhoods thus missing global informa-
tion (bello2019). Recently several papers propose the use of attention modules
to leverage this problem, for example, the use of Squeeze-and-Excitation net-
works (hu2018), Gather-Excite for feature analysis(hu2018), and convolutional
block attention modules (CBAM) (woo2018). They show consistent improve-
ments in the result for image classification on ImageNet (deng2009) and in the
COCO dataset (lin2014) across many different models and scales, proving the
potential of this approach.

In one of our proposed models, we replace conventional convolution op-
erations by successive pointwise and regular convolutions in a reduced space.
As we will show, the proposed modifications is analogous to applying a ten-
sor decomposition, more specifically a high order singular value decomposition
(HOSVD). We propose a Convolutional Pose Machine following tensor de-
composition models and introducing a new architecture with attention mecha-
nisms, not only improving performance but also reducing redundancy for pose
estimation tasks.

We also explore methods to infer the 3D human pose. Several projects
use motion capture to produce computer-animated movies, games, medical
applications, or sports analysis. However, in most of these applications, its use
depends typically on multiple sensors and commercial systems. This is not only
a costly technology but also depends on specialized hardware. Moreover, it is
far from being accessible to most producers. We can find solutions that present
alternative ways to reduce the cost and computational processing for this kind
of application. To overcome these problems, several papers propose solutions
using neural networks(martinez2017, zhao2019, mehta2017, mehta2020). Many
of these works are based on the premise of using a simple monocular RGB
camera, combining techniques to generate the 2D pose estimation and after use
it as input for a 3D regression. Nowadays, 2D pose estimation methods focus
on real-time performance. But, when we consider monocular RGB cameras to
estimate 3D skeletal pose, this is a much harder challenge.

Convolutional Neural Networks, through a grid structure, when pro-
cessing images, achieved state of art results for object detection, image
segmentation and generation. However, many data structures such as 3D
Meshes and human skeletons can only be represented in the form of ir-
regular structures, such as graphs, where CNNs have limited applications.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 1. Introduction 17

To tackle the limitations of common CNNs, Graph Convolutional Networks
(GCN)(defferrard2016, kipf2016, zhao2019) has been recently proposed. How-
ever it still have some issues when we consider a regression problem from 2D
projection to 3D as in the pose estimation problem. The conventional GCN
first works on nodes with arbitrary topologies but the learned kernel is shared
for all edges and the internal structure of the graph is not completely exploited.
Also, it only considers the first order neighbors of each node.

Semantic Graph Convolutions (SGC)(zhao2019) learn the semantic in-
formation encoded in a given graph. The idea here is to tackle the limitation
of original GCN, learning channel-wise weights for edges in the graph, and
then combine them with kernel matrices improving the power of graph convo-
lutions. It also can be used in regression tasks. However, it is still have some
drawbacks, for example, it does not analyse features in a specialized way to
weight their relevance.

Inspired by the SGCs and Squeeze and Excitation Networks, we propose
a novel gating mechanism applied to Semantic Graph Convolutions. We explore
this architecture in a 2D to 3D regression applied to human pose estimation.
Given a 2D human pose as input, we predict the locations of its corresponding
3D joints in a 3D coordinate space. We enhance the analysis of spatial
correlation, which is crucial for understanding human actions(huang2020).
Our network can learn both channel-wise weights for edges in the graph,
combine them with kernel matrices, and understand global and channel inter-
dependencies without using non-local layers. With this approach, we can
achieve state-of-the-art performance considering the 2D to 3D regression,
actually 4% better than the previous related works. Also, our model has 41%
fewer parameters than the original SGC model.

Another issue that we study is the temporal coherence, which is not
present in previous works since they do not consider the relationship between
the processed frames. To track the detected persons in videos and 3D captures,
we use sparse optical flow and a Kalman filter to smooth the movements. Figure
1.1 shows a teaser for all steps developed in our work following a framework
for real time pose estimation.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 1. Introduction 18

Figure 1.1: An example of our 3D human pose algorithm with a single RGB
camera. The 2D data is captured with our 2D pose machine and after processed
by the 3D neural network. It can be used in applications such as computer
animation and game controlling.

As a result of this thesis, the methods presented here were published
in the journal Computers & Graphics, in Eurographics, a top conference
in the field, and in Brazilian Conference on Graphics, Patterns and Images
(SIBGRAPI).

In summary, the main contributions of this thesis are:

– A novel deep neural network with streamlined architecture and tensor
decomposition for 2D pose estimation with improved processing time;

– The extension of our model with Sparse Optical Flow and Kalman Filters
for motion tracking in 2D;

– A novel attention layer for semantic graph convolution operations;

– A novel architecture for 3D pose estimation based on 2D to 3D joints
regression.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



2
Related Work

In this section we present related works that include the theoretical
background of our techniques and also applications related to our domain.

2.1
Convolutional Neural Networks

Today several architectures of CNNs represents the state-of-the-art
approaches for a wide range of visual tasks (krizhevsky2012imagenet,
toshev2014deeppose, long2015fully, ren2015faster). CNNs are composed of
layers of filters that represent neighbourhood spatial connectivity patterns.
Its use of convolutions, non-linear activation functions and downsampling re-
sults in an hierarchical understanding of those features. One important as-
pect of this interleaving of operations is that they usually fuse spatial and
channel-wise information. VGGNets (simonyan2014very) and Inception mod-
els (szegedy2015going) investigated very deep architectures in detail. Batch
Normalization (BN) (ioffe2015batch) demonstrated how normalized data in-
fluences the training process, regulating the distribution of the inputs to the
layers and smoothing the optimization manifold (santurkar2018does). A com-
plementary approach is ResNets, that applied skip connections to also improve
the training of deep networks (he2016deep), (he2016identity). Gates were intro-
duced in Highway networks (srivastava2015training), which have the property
of controlling the flow inside them through shortcut connections. Other works
propose improvements to the learning by changing the connections between
layers (chen2017dual), (huang2017densely). Another related research area is
focused on methodologies for improvements in the computational aspect of the
networks. For example, grouped convolutions increase the number of transfor-
mations that a network can learn (ioannou2017deep), (xie2017aggregated).
Multi-branch convolutions are another approach in this matter, interest-
ing because of their flexible compositions of operators (szegedy2015going),
(ioffe2015batch), (szegedy2016rethinking), (szegedy2017inception). They can
be interpreted as an extension of the grouping operator.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 2. Related Work 20

2.2
Attention in Neural Networks

In recent years, there has been an increasing interest by the machine
learning community in attention models, especially due to their success in cap-
turing long-distance interactions. It was introduced by for the encoder-decoder
in a neural sequence translation model by Bahdanau et. al (bahdanau2014).
In special, self-attentional Transformer architecture achieved state-of-the-
art results applied to natural language process tasks as machine transla-
tion (vaswani2017). This architecture shows to be suitable for capturing long-
distance relations between entities.

Considering feed-forward convolutional neural networks, Woo et
al. (woo2018) presented an attention module where, given an intermedi-
ate feature map, the module tries to infer attention maps along the color
channel and spatial dimensions, and after the attention maps are multiplied
by the input feature map for adaptive feature refinement.

More recently, Bello et al. (bello2019) proposed 2D self-attention as a
replacement for convolutions for image classification tasks, since self-attention
captures global behavior more appropriately than convolutional layers, which
are inherently local. Their results indicate that even though self-attention lay-
ers are successful in replacing convolutional layers for image classification, a
combination of both techniques yields better results in a controlled environ-
ment (bello2019). However, this global form attends to all spatial locations of
an input, limiting its usage to small inputs which typically require significant
down sampling of the original image(ramachandran2019).

On the other hand, Squeeze-and-Excitation Networks (SE-Net) introduce
an attention block for CNNs that improves channel interdependencies, not lim-
iting the input size and presenting huge performance boost in accuracy when
applied to existing architectures. Also there is almost no extra computational
cost when using this kind of architecture. With its simple but effective idea
of weight, each channel adaptively allows us to better interpret its outputs
compared with other models, which do not have formal proof; for example, the
transformer-based model presented by Bello et al. (bello2019).

2.3
Graph Neural Networks

Graph Neural Networks (GNN) was proposed as an framework to un-
derstand and explore graph structure relationships(wu2020, zhou2018, ?).
In GNNs, the representation vector of a node is computed by aggregating
and transforming the data representation of its neighboring nodes. Xu et

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 2. Related Work 21

al.(xu2018) explore these concepts and have proved how powerful GNNs are. As
an evolution of GNNs, Graph Convolutional Networks (GCNs)(defferrard2016,
kipf2016) where introduced to deal with problems related to spectral and spa-
tial perspective. GCNs have also limitations, for example, the kernel of an
operation is shared by all nodes. Zhao et al. (zhao2019) propose the so-called
Semantic Graph Convolutional Networks (SemGCN), a novel neural network
architecture that operates on regression tasks with graph-structured data. It
tries to capture the global and semantic information of nodes relationships.
But, it also has some limitations; for example, it aims to approximate con-
volutions by learning a channel-wise weighting vector and for each spatial
kernel it has a shared transformation matrix. However it does not consider in-
terdependencies between channels. Veličković et al. (velivckovic2017) present
the Graph Attention Networks, where they operate on graph-structured data.
They use self-attentional methods by stacking layers, enabling implicitly differ-
ent weights to different nodes in a neighborhood. However it does not consider
regression problems and in our model, we aim to learn independent weights for
the edges. Figure 2.1 show the mains structure of Graph Attention Networks.

Figure 2.1: Graph Attention Networks. (velivckovic2017)

On the other hand, considering traditional convolutional neural networks,
several papers aim to model global context for feature extraction (cao2019).
“Squeeze-and-Excitation” (SE) networks are examples of it. Hu et al. (hu2018)
propose the SE block, that analyzes channel-wise feature responses by ex-
plicitly modeling interdependencies between channels. We believe that this
approach can be remodeled and adapted to other neural network techniques.
Global context networks (cao2019) also try to adapt SE block to global context
modeling in convolutional neural networks. In contrast with our formulation,
it operates with non-local layers to process global and long-range relation-

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 2. Related Work 22

ships among nodes in the graph. It restricts the feature updating mechanism
by computing responses between nodes based on their representations other
than learning new convolution filters(zhao2019). This is out of our scope here
since we just operate over structured graphs and over Semantic Graph Con-
volutions. As we will see in our experiments, our formulation surpasses the
previous works in terms of reducing the projection error and drastically reduc-
ing the complexity of a 3D human pose regression network. We can achieve
state-of-the-art performance with only 1/4 of computing operations needed by
the work proposed by Zhao et al.(zhao2019).

2.4
Pose Machines and Tracking

Ramakrishna et al. proposed (ramakrishna2014) an inference machine
framework and presented a method for articulated human pose estimation,
called Pose Machines. A pose machine consists of a sequence of multi-class
predictors, that is trained to predict the location of each part in each level
of the hierarchy. Their method has the benefits of implicitly learning long-
range dependencies between image and multi-part cues, tight integration
between learning and inference, and a modular sequential design. The model
was built on the inference machine framework so that it could learn reliable
interconnections between body parts.

Wei et al. (wei2016) introduced the Convolutional Pose Machines (CPMs)
for the task of pose estimation. CPMs expand the main idea of pose machine
architectures and combine them with the advantages of convolutional neural
networks. Their contributions were the ability to learn feature representations
for both image and spatial context directly from data, and the ability to
handle large training datasets efficiently. CPMs consists of a sequence of
convolutional networks that repeatedly produce 2D confidence maps for the
location of each body part. At each stage in a CPM, image features and the
confidence maps produced by the previous stage are used as input. As said
by Wei et al. (wei2016), the confidence maps provide the subsequent stage an
expressive non-parametric encoding of the spatial uncertainty of location for
each part, allowing the CPM to learn rich image-dependent spatial models of
the relationships between elements. Figure 2.2 from Wei et al. (wei2016) show
an example of the detection of heatmaps.

Cao et al. (cao2017) proposed an efficient method for 2D multi-person
pose estimation with high accuracy on multiple public datasets, extending the
original Convolutional Pose Machines. They created a bottom-up representa-
tion of association scores via Part Affinity Fields(PAFs), a set of 2D vector

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 2. Related Work 23

Figure 2.2: Heatmap detections in Wei et al. (wei2016)

fields that encode the location and orientation of limbs over the image do-
main. They show that their approach encodes global context sufficiently well
to allow for a combinatorial optimization algorithm that solves an assignment
problem to detect a person’s skeleton. However, they did not consider tem-
poral coherence in the original work. When considering a video, there is no
relation between persons detected in multiple frames. Also, this approach is
computationally intense, demanding a lot of processing power. Several authors
refers OpenPose as being one of the most lightweight multi-person 2D keypoint
detectors in the literature, however, following their algorithm and considering
their benchmarks, we achieved approximately only 10 FPS using an Nvidia
Titan Xp GPU. Figure 2.3 from Cao et al. (cao2017) presentation in CVPR,
show an example of the detection of heatmaps and also the PAFs.

In regards to the tracking problem, a solution is to use dense optical flow
to adjust the predicted positions to generate a smooth movement across frames.
The Thin-Slicing Network (song2017) achieved excellent results. However, this
system is computationally very intensive and is slower when compared with
the proposed by other papers.

Luo et al. (luo2018) achieved some improvements in terms of both
accuracy and efficiency. They propose a recurrent CNN model with LSTM
for video pose estimation. Although considering occlusion, some incorrect
predictions can be detected when the joint is not visible for an extended period.
Also, their tests do not consider multi-person pose estimation.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 2. Related Work 24

Figure 2.3: PAFs and body points dectection by Cao et al. (cao2017)

2.5
3D Pose Estimation

Following 2D pose estimation models’ success, several papers propose an
end-to-end model to predict the 3D human pose given images in the wild.
One of these papers, with the best results in terms of accuracy, is proposed by
Wang et al. (wang2019). They present a 3D Human Pose Machine with Self-
supervised Learning, where they developed a multi-stage system composed of
three neural network models, involving two dual learning tasks. They generate
transformations for 2D-to-3D pose and 3D-to-2D pose projection. The 2D-
to-3D pose model regress intermediate 3D poses by transforming the pose
representation from the 2D domain to the 3D domain, receiving as input
the features extracted by a 2D pose machine. In contrast, the 3D-to-2D pose
projection contributes to refining the intermediate 3D poses. However, their

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 2. Related Work 25

approach seems to be very costly, considering computational resources, wherein
a high-end GPU, it takes 51 milliseconds to predict a single pose. Figure 2.4
show the archicteture of this approach from wang et al. (wang2019).

Figure 2.4: 3D Human Pose Machine with Self-supervised Learning by Wang
et al. (wang2019)

In a different approach, Martinez et al. (martinez2017) propose a simple
feedforward neural network that receives the 2d joint locations and predicts 3d
positions. They “lift” the ground truth 2d joint locations to 3d space. However,
this also has limitations; for example, it highly depends on the quality of 2D
detections and does not maintain the bone proportion for all bodies.

Mehta et al.(mehta2017) present the first real-time method to capture
the 3D pose in a stable, temporally consistent manner using a single RGB
camera. Their formulation uses a regression for 2D to 3D projection in real-
time and creates a kinematic skeleton fitting method for coherent kinematic
analysis. The Figure 2.5 from Mehta et al.(mehta2017) show the main aspects
of this approach.

Figure 2.5: Model proposed by Mehta et al.(mehta2017) in the Vnect project

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 2. Related Work 26

Zhao et al. (zhao2019) has expanded the proposal of Martinez et al.
(martinez2017), where they use Semantic Graph Convolutions for regress the
3D pose from 2D data. However, their architecture can be also extended to
use attention modules and to reduce the projection error. In our approach,
to solve previous issues about reprojection error and network complexity, we
propose a way to model interdependencies between features in Semantic Graph
Convolutions.

2.6
Motion Capture

Zhou et al.(zhou2018) present a markerless motion capture system that
combines 2D, 3D, and temporal information to infer 3D geometry. They con-
sider the 2D joint locations as latent variables given by a deep, fully con-
volutional neural network. They model the 3D poses with sparse represen-
tation, and the 3D estimated parameters are processed via an Expectation-
Maximization algorithm. Besides, this approach is also computationally inten-
sive for limited hardware.

The XNet(mehta2020) is an evolution of the work proposed by Mehta et
al.(mehta2017) which also predict the 3D pose of Humans and even infer the
bones rotations. They claim that this is the first 3D motion capture system
that uses a single monocular RGB camera. They present a real-time approach
for multi-person 3D motion capture at over 30 fps. However, their model
seems computationally costly and needs a high-end GPU to get the desired
performance. Figure 2.6 by Mehta et al.(mehta2020) show the applications of
this technique.

Figure 2.6: Model proposed by Mehta et al.(mehta2020) as an evolution of the
Vnect project.

The self-supervised learning of motion capture proposed by Tung et al.
(tung2017) presented an optimization architecture for neural network weights
that predict the 3D shape and skeleton configurations are given a monocular
RGB video. Their model is trained using a combination of supervised learn-

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 2. Related Work 27

ing from synthetic data and self-supervision from a differentiable rendering
pipeline for the 3D skeleton and human shape. Although the impressive re-
sults for self-supervised learning in this task, this model still has less accuracy
than traditional models. Figure 2.7 from the original paper presents the aspects
of this technique (tung2017).

Figure 2.7: Model proposed by Tung et al. (tung2017) presenting an optimiza-
tion architecture for neural network and a differentiable rendering pipeline.

In contrast with these previous works, we aim to present a lightweight
framework for computer animation using 3D human pose estimation. To this,
our model does not needs any specialized hardware or even high-end GPU
configurations. Also our model focus only on predict the 3D keypoints location,
leaving the rotation information as a future work.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



3
Tensor Decomposition

This section presents Tensor analysis and its relation with Convolutional
Neural Networks. This can lead us to better understand the connection between
the HOSVD theory and the factorized convolutions. There is a rising interest
in exploring efficient architectures for Neural Networks, either for use in
embedded device applications or for better allocation of resources and services,
reducing network latency and size (howard2017). Several papers propose
different architectures for Convolutional Neural Networks based on factorized
convolutions (howard2017, wang2017, jin2014), and according to our opinion,
the hidden theory behind these applications is related to tensor algebra and
high order decompositions; although few papers discuss these fundamentals.
In the next section we will describe the matrix and tensor decomposition
fundamentals.

3.1
Matrix Decomposition

Matrix decomposition is an essential task to perform improvements in
several applications. Using such decomposition’s can not only reduce process-
ing in numerically efficient algorithms, but also,reduce the space needed to
store data. In this section we demonstrate the relations between tensor decom-
position and 2D matrix decomposition. Before we start explaining the mathe-
matical concepts of matrix factorization, we need to contextualize the impor-
tance of this technique and the factor analysis. For example, in the Spearman’s
hypothesis, Charles Spearman, a British psychologist, propose that human in-
telligence can be decompose following 2 hidden factors: eductive (the ability to
make sense out of complexity) and reproductive (the ability to store and repro-
duce information)(rabanser2017). He propose a set of tests for students where
their scores were noted in a matrix M . Following his hypothesis, this matrix
can be decomposed in 2 smaller matrices where each one can be evaluated for
each student. This hypothesis is presented in Figure 3.1.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 29

Figure 3.1: Spearman’s hypothesis for intelligence factor analysis.

Let’s analyse the mathematical concepts for matrix decompostion. Con-
sidering a rank decomposition, we can approximate a matrixM as in equation
3-1

M = ABT , (3-1)
where A ∈ Rn×r and B ∈ Rr×m. Here we want to approximate M by a
matrix M ′ of a lower rank minimizing the error between then. However the
decomposition is not unique. For example, let us consider a rotation problem.
We add a invertible rotation matrix R and it’s inverse R−1 in the equation 3-1.
The following equation 3-2 represent this transformation:

M ′ = ARR−1BT = (AR)(R−1BT ) = (AR)(BRT )T = A′B′T (3-2)

As we can see, we can again construct two matrices A′ and B′T using this
low rank approximation where rank(M ′) = 2. Generally the rank decomposi-
tion of a matrix is highly non-unique, where matrix decompositions are only
unique under very stringent conditions, such as the conditions of a singular
value decomposition (SVD). Before understand the SVD decomposition, let’s
analyse another related technique called eigen decomposition and it’s limita-
tions. Consider a symmetric matrix A with size n× n. we can decompose this
matrix if it is orthogonally diagonalizable as in equation 3-3:

A = V ΛV −1, (3-3)
where Λ is an n × n diagonal matrix with n eigenvalues of matrix A and V
is a matrix where V ∈ Rn×n. The columns of V are linearly independent and
correspond to the eigenvectors of A. However this decomposition only exists
under some restrictions, described by the spectral theorem and the following
itens:

– the eigenvectors needs to be linearly independent

– matrix A need to be squared

– V is invertible

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 30

Considering the limitations of the eigen decomposition, now we will show
another approach, called singular value decomposition (SVD), which allows an
exact representation of any matrix. With this technique we can easily eliminate
less important parts of this representantion to produce and approximation
of the original matrix with any number of dimensions. Let consider a non-
symmetric matrix A. To calculate the SVD, we need to find the eigenvalues
and eigenvectors of AAT and ATA. As in equation 3-4 we can see that AAT is
an n× n symmetric matrix:

(AAT )T = AT (AT )T = ATA (3-4)

These two matrices represents a special role in linear algebra: they are
positive semidefinite, orthonormal, symmetric and squared. Also they has the
same eigenvalues and same rank of A. Considering this, the SVD theorem can
be represented by equation 3-5

An×m = Un×nSn×mV
T

m×m, (3-5)
where the eigenvectors of AAT make up the columns of U and the eigenvectors
of ATA, the columns of V. S is a diagonal matrix containing the squared root of
the eigenvalues of AAT and ATA. The singular values are the diagonal entries
of the S matrix and are arranged in descending order. The singular values are
always real numbers. If the matrix A is a real matrix, then U and V are also
real.

We can make an approximation of the original matrix by truncating
values where the resulting matrix will be quite close to the original. Suppose
we want to represent a very large matrix A by its SVD components. The best
way to reduce the dimensionality of the three matrices is to set the smallest
singular values to zero. If we set the s smallest singular values to 0, then we
can also eliminate the corresponding columns of U and V. The quality of this
approximation can be evaluated using the frobenius norm.

Also is well know that with very large matrix sizes, computing the
SVD may be prohibitive. The actual computational cost of a full SVD
operation is O(mn2). Considering this we explore another approach that
gives a computationally efficient way to compute a rank-r approximation: the
randomized SVD. This technique has two major steps, where in the first one
we multiply a matrix X by a Gaussian random matrix Ω in order to have
random linear combinations of the columns of X.After we compute a QR

factorization to obtain a good approximation of X, where X ≈ QQTX. After,
in a second stage we compute the SVD of a much smaller matrix defined by
QTX = ÛBΣ̂V̂ T , truncate to the desired rank r and calculate Û = QÛB.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 31

Also truncating the Σ̂ and V̂ we obatain the final approximation defined by
X̂ = ÛΣ̂V̂ T .All computational cost of this approach is defined by equation 3-6

Cost = 2(r + p)O(NonZeros(X)) +O(r2(m+ n)), (3-6)
where p is oversampling parameter p ≥ 0 such that r + p ≤ min{m,n}. The
algorithm 1 show all steps in the process to calculate the randomized SVD.

Algorithm 1: Randomized SVD(X, r, p)
Input: matrix X ∈ Rm×n, rank r, oversampling parameter p
Output: matrices Û ∈ Rm×r, Σ̂ ∈ Rr×r, V̂ ∈ Rn×r

1 Generate Gaussian random matrix Ω ∈ Rn×(r+p);
2 Y ← ΩX;
3 QR factorization of Y where Y ← QR;
4 B ← QTX;
5 Calculate SV D of B where B ← ÛBΣ̂V̂ T ;
6 Û ← QT ÛB[:, 1 : r];
7 return Û , Σ̂[1 : r, 1 : r], V̂ [:, 1 : r];
In the next section we will demonstrate the relation between this tech-

nique and Tensor decomposition, which is one of the building blocks of our
approach. A 2D convolutional layer of a neural network can be described as
a 4-dimensional tensor, where its dimensions are defined by the number of
columns and rows, the number of channels of an input image, i.e., the RGB
channels, and the number of output channels. In this work, we are interested in
improving the pose estimation network for fast applications. To do so, we de-
compose convolutional layers into smaller tensors, i.e., we made approximations
of these layers. This approximation is essential since it reduces the number of
operations performed by each layer and, in this way, it accelerates our neural
network model. The following sections will discuss general aspects of tensors as
well the Tucker decomposition (tucker1966, kim2015, kolda2009, smith2017).

3.2
Tensor Properties

A tensor can be seen as a high-dimensional matrix, i.e, with three or
more dimensions. The order of a tensor T is the number of its dimensions, also
known as ways or modes (kolda2009). In a manner analog to matrices’ rows
and columns, tensors have fibers. A matrix column is a mode-1 fiber and a
matrix row is a mode-2 fiber (kolda2009, smith2017). Third-order tensors have
column, row, and depth fibers for example.

In tensor analysis, there are operators that creates subarrays by fixing
some of the given tensor’s indices. In this way, when we fix all indexes leaving

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 32

only one free, we create a fiber. In the same way, we create slices if we fix
all indexes but leaving two free. For a third order tensor, the frontal, lateral
and horizontal slices are obtained by fixing the third, the second and the first
indexes, respectively.

Unfolding is similar to flattening a matrix, where we stack the fibers
of a tensor in a given way to obtain a matrix representation (cichocki2009,
tucker1966, kolda2009, de2000). For a tensor T with dimensions (I1, I2, ..., In),
its mode-n unfolding of T ∈ RI1×I2×···×IN is a matrix T[n] ∈ RIn,IM , with

M =
N∏

k=1,
k 6=n

Ik, mapping from element (i1, i2, · · · , iN) to (in, j), with j =

N∑
k=1,
k 6=n

ik ×
∏N

m=k+1 Im (kolda2009).

For example, if we have a 3D tensor T with dimensions (3, 3, 2) defined
by the frontal slices:

T1 =


1 2 3
4 5 6
7 8 9

 , T2 =


10 11 12
13 14 15
16 17 18


the mode-1 unfolding matrix is by definition given by:

T[mode−1] =


1 10 2 11 3 12
4 13 5 14 6 15
7 16 8 17 9 18


An outer product is the product of all elements of a vector. For example,

an outer product of two vectors a and b is defined by equation 3-7 producing
a 2D matrix X.

X = a ◦ b = abT (3-7)
A rank-one tensor is a mode-N tensor where it can be seen as the outer

product of N vectors (kolda2009, smith2017) as we can see in Equation 3-
8. In other words, a tensor can be strictly decomposed into into the outer
product of N vectors where each element of T ∈ RI1xI2x...IN is the product of
the corresponding vector elements defined by Equation 3-9.

T = v(1) ◦ v(2) ◦ ...v(N) (3-8)

ti1i2...in = v
(1)
i1 v

(2)
i2 ...v

(N)
iN

(3-9)
Figure 3.2 show the process to generate a rank-1 mode-3 tensor with 3

vectors.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 33

Figure 3.2: A rank-1 mode-3 tensor.

A rank of a tensor T is the smallest number of rank-one tensors that
generate T by computing their sum (kolda2009). A tensor T of N -order is
given by the equation 3-10

T =
R∑

r=1
cra

1
r ◦ a2

r ◦ · · · ◦ an
r = C(A1, A2, · · · , AN), (3-10)

where the matrices A are called factor matrices and hold the combination of
the vectors from the rank-one components as columns. The parameter C is
often used to absorb the respective weights during normalization of the factor
matrices’ columns. This usually means normalizing the sum of the squares of
the elements in each column to one. This is an special property and crucial to
understand the tensor decomposition algorithm in the next section.

Also another important property is the n − rank of a tensor, which
should not be confused with the rank of a tensor T . The n − rank is the
dimension of the vector space spanned by the mode-n fibers (kolda2009).
Let Rn = Rankn (T ) for n = 1, · · · , N , we say that the tensor T is a
rank − (R1, R2, · · · , Rn) tensor where Rn ≤ In for n = 1, · · · , N . To select
the rank-n we analyse each mode − n unfolding of T , in other words, we use
each matrix representation following the stacked fibers.

The product of a mode-n tensor T ∈ RI1×I2×...×IN by a matrix M ∈
RJn×In is a tensor X with dimensions (I1× I2× ...× In−1×Jn× In+1× ...× IN)
given by Equation 3-11 (symeonidis2010).

X = (T ×M)(I1×I2×...×In−1×Jn×In+1×...×IN ) =
∑
in

ti1....iN
mjnin (3-11)

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 34

3.3
Kruskal form of a Tensor

Another property is the Kruskal form of a tensor. It is similar to matrix
properties where the sum of the outer products of two vectors can generate a
matrix M . Let us consider a single tensor T . We can generate it as a sum of
outer products of N vectors, where the number of terms in the sum is called
the Kruskal rank of the tensor (kolda2009).

3.4
Hadamard Product

The Hadamard product is an operation that takes two tensors of same
dimensions and produces another tensor of the same dimension through an
element-wise multiplication. For example, consider a mode-2 Tensor, i.e., a 2D
matrix. The Hadamard Product of 2D Tensors if defined as follows in equation
3-12:

A ◦B =


a1,1b1,1 · · · a1,nb1,n

... . . . ...
am,1bm,1 · · · am,nbm,n

 (3-12)

3.5
Kronecker Product

The Kronecker product is a generalization of the outer product which
takes two tensors of arbitrary size. The Kronecker Product of 2D Tensors if
defined as follows in equation 3-13:

A⊗B =


a1,1B · · · a1,nB

... . . . ...
am,1B · · · am,nB

 (3-13)

3.6
Khatri-Rao Product

The Khatri-Rao Product of two matrices corresponds to the column-wise
Kronecker product of these matrices as in equation 3-14:

A�B = [a1 ⊗ b1, · · · , an ⊗ bn] (3-14)

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 35

3.7
Tucker Decomposition

A Singular Value Decomposition of a 2D matrix, i.e, a 2-order tensor,
can be defined as in equation 3-5 where U is a unitary matrix m ×m, Σ is a
rectangular diagonal matrix m × n and V T is the transpose conjugate n × n.
This, equation can be rewritten as follows, in Equation 3-15 (symeonidis2010):

M = C × U1 × U2, (3-15)
where U1 is defined as (u1

1×u1
2× ...×u1

I1) and U2, defined as (u2
1×u2

2× ...×u2
I1),

where both are unitary matrices, and C is a core matrix (I1 × I2).
The SVD decomposition can be generalized to High Order Tensors, where

this approach is also know as High Order SVD or Tucker decomposition
(symeonidis2010). Such mathematical tool considers the orthonormal spaces
associated with the different modes of a tensor (kim2015). For example,
Equation 3-15 can be extended for 3D tensors as follows:

M = C × U1 × U2 × U3, (3-16)

where U1, U2, U3 contains the 1-mode, 2-mode, and 3-mode singular vec-
tors, respectively, related to the column space of Mmode−1,Mmode−2, and
Mmode−3 matrix unfoldings. C is a core tensor with orthogonality property
(symeonidis2010).

This technique can be generalized for n-dimensional tensors. Let’s con-
sider the tensor M ∈ Rd1×d2×···×dn where d is the order of the tensor. The
Higher Order Singular Value Decomposition of this tensor is defined by the
following equations 3-17 and 3-18

C = (UT
1 , U

T
2 , · · · , UT

d )M, (3-17)

M = (U1, U2, · · · , Ud)C, (3-18)
where each Uk ∈ Rnk×nk is an unitary matrix containing a basis of the left
singular vectors of the standard factor-k flatteningM(k) ofM. The jth column
of Uk corresponds the the largest jth singular value of matrix Mk as in SVD.
The HOSVD algorithm 2 is described in algorithm where to compute the Uk

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 36

matrices we use the randomized SVD to reduce the complexity.
Algorithm 2: Randomized HOSVD(X, r, p)

Input: TensorM∈ RI1×I2×···×In , target rank vector r ∈ Nd,
oversampling p where
ri + p ≤ min

{
Ii,
∏

j 6=i Ij

}
forj = 1 · · · d and p ≥ 0

Output: matrices Û and core vector C
1 C ←M;
2 U = [];
3 for i = 1:d do
4 Mi ← flatten(M, i);
5 [Û , Ŝ, V̂ ] = RandSVD(Mi, ri, p);
6 Ui ← Û ;
7 C = C × UT

i

8 end

Also, as in the SVD for matrices, the HOSVD has a truncated form by
selecting and arbitrary value for the rank selection. For each matrix we can
reduce the dimensionality and the number of operations needed. Figure 3.3
show this operation.

Figure 3.3: Truncated form of HOSVD (kolda2009)

Tensor decomposition has several applications. For example in Figure
3.4, we present an example were we apply HOSVD to compress volumetric
data. As we can see here, the quality of the decomposition and approximation
highly depends to the ranks selected.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 37

Figure 3.4: HOSVD applied to a volumetric data from MRI. The first Figure
show the orignal data, the second the data reconstructed after a decomposition
using target rank values of 50 and in the third Figure, target rank values of
10. The error between the original data and the approximations was 0.09 and
0.25 respectively. Also, the decomposition highly reduce the space needed to
store the data, were it was by half in the second image and by 1/3 in the third.

We could now apply these Tucker decomposition concepts to our domain

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 3. Tensor Decomposition 38

(kim2015). Consider a mode-4 kernel tensor T , which can be seem as a kernel
in a convolution layer. All operations for its decomposition can be written in
the form described in Equation 3-19 (kim2015):

Tx,y,z,k =
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

Cr1,r2,r3,r4U
1
x,r1U

2
y,r2U

3
z,r3U

4
k,r4 , (3-19)

where C is a core tensor of size (R1 × R2 × R3 × R4) and the U∗ matrices
are factor matrices of sizes X ×R1,Y ×R2,Z ×R3, and K ×R4, respectively.
Each dimension, in our domain, is associated with the dimensions defined by
the number of columns and rows, RGB channels and the number of output
channels in a convolutional layer of a neural network. Although this is true
considering as input an RGB image, in successive layers the dimensions and
number of channels vary. In this way, in intermediate layers, our tensors can be
defined by the spatial dimensions X and Y of the input, the number of filters
of the input data, i.e. the "depth", and the number of filters to the output
data of the layer. Considering this, the decomposition is performed over the
weights of each layer of convolution in our Neural Network and, as we can see,
the convolution kernels are 4D tensors. We can boost the speed performance
of a neural network by creating several factorized approximations of regular
convolutions with only a few reductions in accuracy. The next chapter presents
the details of our model as well its relation with tensor decompositions.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



4
Neural Network Architectures for 2D Pose estimation

In this chapter, we describe the main aspects of our deep convolutional
neural network models for 2D pose estimation. At first, we developed 2 different
2D neural network for 2D human pose estimation. A partially decomposed
model with temporal coherence and a full factorized model with attention
modules. In both techniques we use Tensor decomposition to improve the
processing time.

4.1
2D Pose Estimation Model

This section describes the main aspects of the architecture proposed by
Cao et al. (cao2017). The network architecture consists of a feedforward neural
network that predicts a set S of 2D “confidence maps", from which the body
parts are located in an image, and also a set L of 2D vector fields that help
identify the connection between two body parts to generate a skeleton. The
set S = {S1, S2, ..., Sn } has n “confidence maps" one for each part of the body
(hand, elbow, head, etc) and the set L = {L1, L2, ..., LC} has C 2D vector
fields, each used to construct the skeleton, identifying some member of it: an
arm or leg for example.N candidates for each body part are generated, creating
for each pair a bipartite graph. Finally, the results are analyzed following a
greedy strategy, using the Hungarian algorithm with some modifications to
create a connection between two parts. This process is performed in each frame.

The neural network is divided into two branches: one responsible for
generating the “confidence maps", and the other, the affinity fields. Also, these
two branches are divided into t stages, where the authors of the original paper
set t = 6 stages. At first, the images are processed by the first ten layers of a
VGG-19 convolution network, generating a set of F features that will be used
in the subsequent stages of the OpenPose. These features are used as input for
the other layers of the network and, as result, they have a set S of confidence
maps and a set L of Affinity Fields (vector fields). Let ρ and Φ represent the
convolution layers for the confidence maps and affinity fields. At the end of
this step, the results are concatenated with the initial set F to produce refined
results. This process is performed for each subsequent stage.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 40

To guide the network in its predictions, two objective functions are given
at the end of each stage, one for each branch. The objective functions for both
branches are based on the distance between the network output data and the
ground truth generated for the confidence maps and vector fields, according
to Equations 4-1 and 4-2 (cao2017):

f t
S =

J∑
j=1

∑
p

W (p) ||St
j (p)− S∗j (p) ||22; (4-1)

f t
L =

C∑
c=1

∑
p

W (p) ||Lt
c (p)− L∗c (p) ||22, (4-2)

where S∗j and L∗c represent the ground truth of the annotated data; J and
C are, respectively, the confidence maps for each part of the body, and the
vector fields. The W (p) is a binary mask with W (p) = 0 when there is no
data annotated at the point p of image. The mask is used because there are
images in the training dataset that are not entirely annotated, so it prevents
true positive data from being penalized. The overall loss function is defined by
the sum of Equations 4-1 an 4-2.

The training images, as well as their annotations, were obtained through
the COCO (Common Objects in COntext) dataset (lin2014), using more than
100000 images for the task.

Following the architecture model, they first analyze the set S to identify
the possible candidates for a part of the body. In total, 18 confidence maps are
generated by branch 1 defined by the convolution network ρ. Each confidence
map of the set S can be viewed as a heatmap.

For this, they used a technique called Non-maximum suppression to
identify the position of potential candidates by getting the peaks in the image.
With all possible candidates (points) obtained, it is necessary to find the
real connections between them. Therefore, for each connection, is built a
complete bipartite graph where each node is a part of the body, and each
edge is a connection representing an arm or a leg, for example. To find the
right relationship, they face a well-known problem from graph theory that is
finding the best match between the vertices of a bipartite graph: an assignment
problem. For this task, the model uses the vector fields that were generated by
the output of Φ of the network. An integral line is computed along the segment
described by each pair of candidates, and since the integral line shows the
influence of a given field along a line. Equation 4-3 shows how they compute the
score of each segment represented by each pair of body parts. Given two points,
d1 and d2, as candidates for two parts of a skeleton forming a connection, the
score of an edge connecting these two points is:

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 41

E =
∫ u=1

u=0
Lc (p (u)) . dj2 − dj1

||dj2 − dj1||2
du, (4-3)

where Lc represents the vector field and p(u) interpolates the position between
two body parts dj1 e dj2,

p (u) = (1− u) dj1 + udj2. (4-4)
Afterward, to obtain the optimal solution, they used a classical method

called Hungarian Algorithm. Regarding the detection of multiple people,
determining the pose of each becomes an n-dimensional matching problem.
Since this is a considered NP-Hard problem, some restrictions can be made.
First, a minimum number of vertices for each body segment is chosen to
generate a spanning tree instead of having the complete graph. Afterward, the
problem is decomposed into a set of bipartite graphs to determine the matching
between adjacent nodes independently. With all the connections defined, they
make the union of all the connections that share common vertices, together
with each other, to create the skeleton as a whole. Figure 4.1 illustrates the
final result of the pose estimation.

4.2
2D Partially Decomposed Model

In real time applications, efficiency and approaches for reducing the
computational cost are essential. Concerning the model of Cao et al. (cao2017),
we propose a new deep neural network based on a streamlined architecture and
Tensor decompositions.

Initially, we modified the generation of the first features using Depthwise
Separable Convolution of MobileNet (howard2017), which is typically used for
embedded devices. We replace the original layers of VGG network because
its performance in this step represents the first bottleneck. Here, we decrease
the number of operations required in the convolution network process, making
an approximation through successive convolutions. The MobileNet model is
based on a form of factorized convolutions which transforms a standard convo-
lution into a depthwise and a pointwise convolution (howard2017). Depthwise
Separable Convolution deals not only with the spatial characteristics of the
image but also with depth, i.e., the RGB channels. In this process, a kernel
is separated into other two to perform two convolutions: a depthwise and a
pointwise. Essentially, the depthwise convolution applies a single filter to each
input channel and the pointwise applies a 1x1 kernel convolution to combine
the outputs.

A Depthwise Separable Convolution requires approximately 8 to 9 times

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 42

Figure 4.1: 2D pose estimation example.

less computation than a standard convolution, with only a small reduction
in accuracy (howard2017). Based on the architecture of the MobilenetV2
(sandler2018), we create 12 layers of Depthwise separable convolutions instead
of regular ones for feature extraction.

Following this same idea, we create another lightweight structure for
intermediate layers of the network intending to increase FPS performance. In
the first three stages, we perform approximations using tensors to speedup the
runtime performance without having significant losses in the network accuracy.
Each intermediate convolution stage was replaced by a block consisting of
a pointwise, a standard convolution, but with reduced space, and another
pointwise convolution. For example, in the intermediate layers of our network,
convolutions with input channels and output channels of n = 128, kernel 3x3
and stride 1x1 were replaced by a block containing a pointwise convolution
with 128 input channels and 28 output channels, a regular convolution with

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 43

28 and 32, for input and output size respectively, with a kernel 3x3 and
another pointwise convolution with 32 channels for input and 128 channels
for output. We use this approach to change the stages 1 to 3 of our network.
This can be seen in an analogous manner as an approximation of a regular
convolution described by Kim et al. (kim2015), were they used a High Order
SVD for this task. Similar as in the depthwise separable convolutions, we split
a regular convolution into other 3, where it drastically reduce the computation
and model size. Considering the tensor decomposition’s theory stated in
the previous sections, let us relate it with convolutional layers. A regular
convolution maps an input tensor into another with different size by successive
operations as we can see in the Equation 4-5:

conv(x, y, z) =
∑

i

∑
j

∑
k

Θ(i,j,k,z)W(x−i,y−j,k), (4-5)

where Θ is a kernel of size IJKZ (for example, a kernel with size I×J = 3×3,
with K = 3 channels (RGB), and Z = 128 convolution filters) andW an input
tensor with size XYK, as we refer typically as an image, for example, with X
and Y the image dimensions and K the number of channels. Replacing Θ by
our approximation, this approach can be seen as kernel tensor decomposition
(kim2015) as we can see in the Equation 4-6.

conv(x, y, z) =
∑

i

∑
j

∑
k

approxW(x−i,y−j,k) (4-6)

Regarding the equation 3-19 in our previous section, the equation 4-7
defines the tensor named approx computed by the HOSVD decomposition
(tucker1966):

approx =
R3∑
r=1

R4∑
r=1

Ci,j,r3,r4U
k
r3(k)U z

r4(z), (4-7)

where Uk,r3 and Uz,r4 are the factor matrices of sizes KxR3 and ZxR4,
respectively, and C is s a core tensor of size (I, J, R3, R4). Notice that this
equation uses only the R3 and R4 ranks. In our application, we suppress mode-
1 (R1) and mode-2 (R2), which are associated with spatial dimensions of an
image, because they are quite small (kim2015).

When replacing Θ in the equation 4-5 by the equation 4-7, we can rear-
range the operations obtaining 3 convolutional operations used to approximate
the original: 2 pointwise convolutions and 1 regular convolution with reduced
space. This leads us to the convolutional block previously described. Here the
first pointwise convolution reduces the number of channels from K to R3, the
regular convolution of K input and Z output channels has now R3 input chan-
nels and R4 output channels. Finally, the last pointwise convolution is used to
get back the original output size. This process not only makes a speedup in

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 44

our application, but also reduces the number of parameters needed.
A regular convolution requires D2ZKXY multiplication-addition oper-

ations, where D2 refer to the dimensions of our kernel 3 × 3 and X and Y

refer to the spatial dimensions of our data. Considering the decomposition,
our approach has a speed-up ratio S defined by the equation 4-8 (kim2015).

S = D2ZKXY

KR3XY +D2R3R4XY + ZR4XY
(4-8)

Regarding our model and the previous equation, each decomposed layer
requires approximately 9.3 times less operations than a regular convolution.
Figure 5.3 represents the architecture model of our network. Here, we have
more layers of convolution, but the number of operations and weights is smaller,
since each regular convolution is substituted by other 3 factorized. As we can
see in Figure 5.3, for stage 1, the overall number of convolutions, considering
all blocks, is 3×3+2 and for stages 2 and 3 is 5×3+2. We defined this model
for the first three stages, after the feature extraction, in an empirical way,
where we did not observe significant differences in the accuracy of our network
when comparing to the OpenPose. If we extend this approach to the other
stages, for example, to stage 4, we verified a more significant difference in the
accuracy, almost 25%, leading to wrong results in inference. Also, if we apply
to the whole 6 stages, we face an instability problem (kim2015, zhou2016),
where it is difficult to find a good learning rate as a well how to initialize the
weights. We believe that is an effect of applying stacked decomposed layers to
the model, and for this reason, we limited the number of decomposed stages to
the first three. We can see the precision and recall of 4 different configurations
for decomposed networks in figure 4.2.Also, as we can see in Figure 4.3 and
Figure 4.4, we evaluate the number of floating operations and parameters
of each decomposed stage. We choose the model of 3 decomposed stages
following a trade-off between precision and performance, where, following our
interpretation, is the best model version.

Figure 4.12 shows some results of the inference using our network. As we
can see, in major cases, we can achieve a good performance in the detection
despite some small errors considering high movement shifts and blurred images.

Despite frame rate issues, another problem identified in the OpenPose
was the lack of temporal coherence in the original paper. In other words, there
is no relation between the objects defined in one frame to the ones defined
in the subsequent frames. Therefore, the reference is lost for each identified
person. For the context of our applications, it is necessary to create a module
for this task. Temporal coherence enables us to actually implement real motion
tracking, where the temporal correspondence between each pair of the frame

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 45

Figure 4.2: Precison and Recall considering different configurations for decom-
posed stages.

Figure 4.3: Floating Operations per second performed by each version of
decomposed models.

needs to be preserved, considering motion coherence between spatial neighbors
and across the temporal dimension (tsai2012). We also can use this to fix the
tracking in a single person, removing problems involving people interaction,
for example.

To solve this problem, in a first experiment, we create a module for

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 46

Figure 4.4: Number of Parameters of each version of decomposed models.

temporal coherence using Optical Flow. Optical Flow is a pattern of apparent
motion of objects in images between two consecutive frames caused by the
movement of an object or the camera. In other words, it is an approximation
of image motion based upon local derivatives in a given sequence of images.
Some patterns can affect the sequence of images, causing temporal variations in
the brightness. In sum, it specifies how image pixels moves between subsequent
frames.

Firstly, we tested the Kanade-Lucas-Tomasi (KLT) algorithm (kim2009),
and our preliminary results not only presented an increase in the performance
of the technique considering the frame rate, but also smoothness in the motion
capture. For the KLT algorithm, we pass the points of skeletons detected by
the network. At each interval of t frames, these points are iteratively tracked
through the optical flow, where the previous frame, the position of the previous
points, and the next frame are passed to the detection function. With each new
frame, the location of each point of the tracked skeletons is updated. If any
position or point are lost in the process, the tracking is stopped. Then, the
network is executed again and the skeletons recalculated. The same is done at
the end of the interval of t frames to guarantee the consistency of the tracking.
Normally we use an interval of 10 frames, where we do not where we did not
detect a greater error in the tracking when compared with the technique frame
to frame. Here, the sparse optical flow deals with much less parameters than
the use of the CNN and the calculation of line integral at each frame, where it
tracks just the previous point detected by the CNN. The optical flow assumes

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 47

Figure 4.5: TensorPose CNN model. The initial features were extracted using
the first 12 layers of a Mobilenet V2 and in the intermediary layers we replace
conventional convolutions by a block containing a pointwise convolution,
regular but with reduced space and another pointwise convolution. We have
more layers of convolution but the number of operations and weights is smaller,
which leads to a boost in performance. At the final of each stage the results are
concatenated with the results of feature extraction from Mobilenet to refine
the results.

that the intensity of the pixels of an object does not change with time and
neighboring pixels have the same pattern of movement. Classical approaches,
such as optical flow fail when it comes to environments with illumination
changes and long-range motions. To solve these issues, we change the algorithm
to use the Robust Local Optical Flow (Senst2016), following the framework
proposed by Senst et al., while taking into account an illumination model to
deal with varying illumination. Here the computational cost of this variation,
used by the KLT method, is given by the upper bound of O(nNlargei), where n
is the number of computed motion vectors and N is the number of pixels of the
larger image region i (Senst2016). Also, as support to the tracking process, we
use the Kalman filter and Multiple Instance Learning (MIL). The Kalman filter
(chui2017) is used to predict the position of the skeleton in the frame after the
current one, and to ensure that the references for each skeleton detected are
maintained. Given the distance between the points calculated by the network
and those predicted by the Kalman filter, a threshold is given to ensure that
the reference points are maintained. We fix this threshold considering a radius
of 20 pixels of error. Combining Optical Flow and Kalman filter gives us
the possibility to interpolate the data over subsequent frames, which enable
us to smooth the captured movement. We also use the MIL (babenko2009)
just to ensure that the detected person’s reference is maintained. We use it
as an additional feature to identify the bounding box of detected keypoints,
and to maintain the reference of a person, even when the network is called.
Although their use is optional. Maintaining the reference of each person along

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 48

Figure 4.6: Results containing viewpoint variation and occlusion, which are
common characteristics in images. Images from COCO dataset, Rio Olympics
2016 and Brazilian National Basketball league.

the frames is straightforward. We set a bounding box for keypoints coordinates,
afterwards a module called Manager assigns an identifier for each detected
person. We then employ a Kalman Filter to predict the person’s future location
based on his previous data and estimate the correct new position. To set the
new positions, we compute the distance between the centroid of the previous
bounding box with the subsequent, combining with the estimated velocity and
position given by the Kalman Filter. However, this technique also faces some
problems. For instance, when two persons are overlap, in some cases, their
identifiers are swapped. In future works, we intend to solve this issue.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 49

4.3
Fully Decomposed Model

This method can be seen as an improvement for pose machines. As in the
previous architecture, for the output we have the set of 2D confidence maps S
of body part locations and a set of 2D vector fields L (cao2018). We developed
a new architecture for the data refinement using SE-Net blocks between inter-
mediary layers. With this approach we improve the model accuracy and after,
and again, we decompose convolutional layers aiming to reduce redundancy
and improve processing time. Figure 5.3 represents the architecture of our
model following the convolutional pose machines (wei2016), where we refine
the predictions over successive stages. We built a sequential model for the first
6 convolutional blocks of each stage, adding after each pair of convolutions,
attention modules. The outputs of two consecutive convolutional blocks are
concatenated, following an approach similar to DenseNet. The last 6 convolu-
tional layers form 2 branches with 3 layers each, where the first is responsible
for the 38 maps for part affinity fields and the second, for 18 feature maps for
body keypoints. The output of the first branch is used as input to the second
in a sequential approach.

After all stages, we have a post-processing stage similar to Openpose
(cao2017) and the previous approach. For assignment problem, we use a
variation of the Hungarian algorithm called the Jonker-Volgenant algorithm
(jonker1987) to create a connection between two parts. This process is per-
formed in each frame.

In the next sections, we first briefly review the structure of the Attention
block, the factorized convolutions, and then the detailed descriptions of our
proposed modules and methods are presented.

Figure 4.7: In our CNN model, we have 3 blocks containing two convolutional
layers and an attention block

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 50

4.4
Attention block

The original SE-Net proposed a “Squeeze-and-Excitation” block to adap-
tively highlight the channel-wise feature maps by modeling weights applied to
each channel(hu2018). It was proved that SE blocks bring significant improve-
ments in performance for existing state-of-the-art CNNs at slight additional
computational cost.

In the excitation step, we fully capture channel-wise dependencies. A
simple gating mechanism with a sigmoid activation (S) is applied. Consider
an input with ch channels. This mechanism is composed by two fully connected
layers (FCL) where the first has ch

r
neurons and a LeakyReLU activation, and

the second, ch neurons. Finally, the second FCL is followed by the sigmoid
activation. The hyper parameter ratio r allows us to vary the capacity and
computational cost of the SE blocks in the network and can be evaluated
empirically. In the sequence, to generate the output, an element-wise multipli-
cation between the result of the gating mechanism and data input is performed.

In a formal way, let X ∈ RH×W×ch be the tensor corresponding to
the input of attention block and X ′ ∈ RH×W×ch its output. In the squeeze
operation, a global average pooling is performed on the input to generate the
weights z, where each element of z is computed according to the Equation 5-1:

zc = 1
H ×W

H∑
i=0

W∑
j=0

Xc(i, j), (4-9)

where Xc corresponds to each channel of X . After that, it is applied the
excitation step, on which the information aggregated in the squeeze operation,
is used in a operation which aims to fully capture channel-wise dependencies.
A simple gatting mechanism with a sigmoid activation is applied as according
to this Equation 4-10:

α = sigmoid(W2(β(W1(z)))), (4-10)
Here, W1 ∈ R ch

r
×ch and W2 ∈ Rch× ch

r represent two fully connected layers and
β a LeakyRelu activation. The hyperparameter ratio r allows us to vary the
capacity and computational cost of the SE blocks in the network and can be
evaluated empirically.

In the sequence, the weights α are re-scaled on the input X , generating
the output. To do that, a Hadamard product is computed, i.e., an element-wise
multiplication between α and X as described in Equation 4-11:

X ′ = α ◦ X (4-11)
Similarly to Su et al. (su2019), we use spatial attention mechanism to

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 51

adaptively highlight the task-related regions in the feature maps in addition
to the channel-wise. Different from paying attention to the entire image,
which can lead to focus on irrelevant features, spatial attention can enhance
the overall results (su2019). With the spatial input X ∈ RH×W×ch and its
output X ′ with same dimensions, the spatial attention is generated by a
pointwise convolution followed by a sigmoid activation. The spatial attention
is represented by Equation 4-12:

β = sigmoid(WX ), (4-12)
where W represents the pointwise convolution. Finally, the output is also re-
scaled to achieve X ′ according to Equation 4-13 (su2019):

x
′

i,j = βi,j ∗ xi,j, (4-13)
which is an element-wise multiplication between the spatial elements of β and
X . In our architecture, each attention block is composed of spatial attention
modules followed by channelwise SE-Net blocks, as we can see in Figure 4.8.

Figure 4.8: The attention block used in our architecture. Here we first process
spatial attention operations before the channel-wise.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 52

4.5
Factorized Convolutions

Similarly to the first version of our TensorPose, we apply tensor de-
compositions to neural networks aiming to factorize their kernels, creating
approximations and improving the processing time for inference. We use this
strategy as an exploratory way to model a factorized architecture, formed by
pointwise convolutions combined with a regular convolution with reduced size.
We aim to create a low rank approximation, where we model our architecture
following an one-shot whole network compression scheme (kim2015). Here dif-
ferently from the previous approach, we have two steps: rank selection and
tensor decomposition. We analyze the unfolding mode-3 and mode-4 of each
layer’s kernel tensor with global analytic variational Bayesian matrix factor-
ization (VBMF)(kim2015). Our experiments show that an approximation of
1/3 or 1/4 of mode-3 and mode-4 of a tensor already presented effective re-
sults. We consider just the mode-3 and mode-4 due the fact that the mode-1
and mode-2 represent just the spatial dimension of kernel and they are quite
small. The VBMF tries to infer a optimal low rank selection and with these
values, after, we apply the Tucker decomposition on each kernel. Even using
the VBMF, it was empirically verified that an approximation of 1/3 or 1/4 of
original output size of the convolution operations already presented effective
results considering the performance of our network.

4.6
Proposed Architecture and Experimental details

4.7
Architecture

As said before, our architecture is based on the concepts of convolutional
pose machines and in this section we present the modifications in the archi-
tecture for feature extraction and refinements stages. Again, we remove the
12 blocks of convolution of a VGG-19 used in the original and replace by a
modified architecture of a Mobilenet v2. This architecture has the advantages
of being a state-of-the art mobile constrained network with a huge improve-
ment in performance while maintaining the accuracy. Also we set a number of
6 stages for intermediary refinement in the iterative prediction.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 53

4.8
Training

We trained our model over 120 epochs using Adam optimizer with
learning rate varying from 8e−5 to 7.38e−6. Also we use as activation function
LeakyRelu instead of Relu. Our cost function considers a gaussian kernel
distance between the annotations and the inferred data for each body part
and the affinty fields, which can be written as in equation 4-16.

f i
key =

nkeys∑
k=1

∑
p

1− e−w(p)‖keyi
k−key∗k‖2 , (4-14)

f i
paf =

paf∑
k=1

∑
p

1− e−w(p)‖paf i
k−paf∗k‖2 , (4-15)

loss =
6∑

i=0
f i

key + f i
paf (4-16)

The kernel distances in our functions were similar to the ones proposed
by Cao et al. (cao2018). We weight the loss functions spatially to address a
practical issue that some datasets do not completely label all people. Here, key
and paf represents the inferred maps for each keypoints and part affinty field
respectively and the w is a binary mask were w(p) = 0 when the annotation
is missing at pixel p. After the training process with the original convolution
structure, we decompose our network following the HOSVD and retrain over
50 epochs to get fine tune the model and improve the precision of detections.

4.9
Experiments with partially decomposed network

Our proposal was tested and compared with the results obtained by
OpenPose 1.3. The TensorPose code was implemented in Python, including
the post-processing steps, such as the line integral calculation and the assign-
ment problem. In training, 110000 images were used as well as 5000 images in
validation, with a maximum of 200 iterations per epoch. In COCO dataset,
approximately 150000 people and 1.7 million labeled keypoints are available.
Considering the inference, we use the COCO validation dataset to compare
our modified model and the OpenPose. COCO uses a metric called Object
Keypoint Similarity (OKS), which measures of how close the predicted Key-
point is to the ground truth annotation. Also, COCO uses the mean average
precision (AP) and average recall (AR) over 10 OKS thresholds as the main
competition metrics(cao2017). In our initial tests, we consider Precision and
Recall at 50% and 75% OKS (AP-50, AP-75, AR-50, AR-75) which are usu-

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 54

ally used for benchmark. We test both models with the evaluation data from
COCO and submit the results to the COCO evaluation server. Equation 4-17
shows the formula used to calculate the OKS.

OKS =
∑

i e
−

d2
i

sˆ2k2
i δ(υi > 0)∑

i δ(υi > 0) (4-17)

where di are the Euclidean distances between each detected keypoint and the
ground truth, υi are the visible flags for each annotated keypoint, and s × k
(scale × keypointconstant ) is related to a standard deviation of a gaussian
related to concentric circles where their radius varies by keypoint type. The
metrics AP-50, AP-75, AR-50, AR-75 are related to how close a prediction
is to annotated data considering the Gaussian standard deviation. The s × k
is computed by evaluating this Gaussian function, centered on the ground-
truth position of a keypoint and the standard deviation is specific to the
keypoint type, which is scaled by the area of the instances, measured in pixels
(ruggero2017). Table 4.8 shows our results in contrast to OpenPose and Figure
4.11 show us a visual comparison between the 2 techniques. Also, varying the
OKS threshold from 0.5 to 0.95, we measure both precision and recall for the
COCO validation dataset, as we can see in the Figure 4.10, where highest
values mean how close our predictions are to the ground truth annotations
considering each threshold.

Model AP 0.50 AP 0.75 AR 0.50 AR 0.75
OpenPose 0.780 0.593 0.807 0.647
TensorPose 0.750 0.536 0.772 0.591

Table 4.1: Precision and Recall for OpenPose and TensorPose Models.

Here, higher OKS means higher overlap between predicted Keypoints and
the ground truth. As we can see, our model has about 6.5% lower accuracy
than OpenPose, which is mainly caused by our proposed simplification on the
intermediary layers. Just to remember that this simplification promotes an
advantage of having 9.3 times less operations in these layers than the original
OpenPose. We have focus on real-time application, so this accuracy loss does
not represent significant problems, since some prediction errors are acceptable.

Following the benchmarking and error diagnosis for pose estimation
proposed by Ruggero et al. (ruggero2017), we analyze 4 types of localization
errors using the annotations of COCO dataset:

– Jitter: small position error around the correct keypoint location;

– Miss: large localization error when the detected key point is far away of
any body part;

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 55

Figure 4.9: Comparison of between the OpenPose model and ours. The first
Figure is generated by the OpenPose and the second by our model. As we can
see, our model is slightly less accurate than the original work and fails to find
the exactly position of a body joint in particular cases. Although due to the
nature of our application, this issue can be considered acceptable. Image from
COCO dataset.

– Inversion: confusion between semantically similar parts of a detected per-
son,i.e, wrong body part associations for the same person due problems
like self occlusion, for example;

– Swap: confusion between semantically similar parts of different persons,
i.e., problems related to the association of body parts of a detected person
to another.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 56

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0
pr

ec
is

io
n

areaRng:[all], maxDets:[20]

Oks 0.50: .750
Oks 0.55: .726
Oks 0.60: .691
Oks 0.65: .645
Oks 0.70: .596
Oks 0.75: .536
Oks 0.80: .454
Oks 0.85: .347
Oks 0.90: .228
Oks 0.95: .099

Figure 4.10: Precision and Recall for all OKS thresholds. AreaRng is related
to the area of the objects annotated with size bigger than 322 pixels.

Table 4.2 shows the total of correct predictions and errors and Table 4.3
presents the estimate error associated to each detected joint considering our
model. As we can see, most of the errors are related to the small difference
between the predict keypoint and the annotated data and to significant
localization error, which we believe this is due to false positives detected. We
can also see that most localization errors affect keypoints more sensitive to
errors related to occlusion or that usually involves some interaction between
people such as the arms. As we can see in Table 4.2, our model performs better
than OpenPose considering Jitter, Inversion, and Swap errors. However, it also
misses more keypoints localizations than the previous related work.

Total Num. keypoints: [62790] Tensorpose Openpose
Good Prediction 72.1453% 73.5%
Jitter 12.80% 13.9%
Inversion 2.41% 3.7%
Swap 0.976% 1.9%
Miss 11.656% 7%

Table 4.2: Total of correct predictions and errors considering the COCO
validation dataset in percentage. We compare our technique with OpenPose.

In terms of runtime performance comparisons, we begin with the test of
the CNN processing. Considering just one image with 23 people, we compared

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 57

Keypoints jitter % inversion % swap % miss %
nose 9.6 0 2.4 5
eyes 16 4.8 4.2 7.4
ears 13.1 0.3 3.6 6.1
shoulders 12.8 12 21.9 7.1
elbows 12.6 4.6 17.5 14.3
wrists 9.7 10.8 15.2 21.8
hips 13.5 24.2 14 11.7
knees 7.1 22.7 11.1 13.4
ankles 5.5 20.6 10.1 13.2

Table 4.3: The frequency of localization errors over all the predicted keypoints.
We have 62790 joints detected in 5000 images with this test.

our approach with OpenPose. The tests were performed in a GPU Nvidia RTX
2060 with 6GB of memory, where we vary the scale of the image tested by a
factor of 0.5 and repeat each test 1000 times. As we can see in Table 4.6,
in average, our approach has a better performance when compared with the
OpenPose.

Image Resolution OpenPose TensorPose
328 x 193 ∼55,08 ms ∼54,86 ms
656 x 386 ∼120.224 ms ∼84,25 ms
984 x 579 ∼174,75 ms ∼116,66 ms
1312 x 772 ∼320,18 ms ∼210,41 ms

Table 4.4: CNN processing time for OpenPose 1.3 and TensorPose. We vary
the scale of the image tested by a factor of 0.5 considering 4 image scales.

When processing videos, to avoid processing the CNN and calculating the
line integral and the execution of the Hungarian algorithm at each step, we use
sparse optical flow. We get not only performance improvements, with a frame
rate above 30 FPS, but also smoothness in motion tracking, also due to the
Kalman filter. In the first test, we defined a fixed interval of 10 frames, where
the optical flow is processed and, afterward, its parameters are updated by a
new processing step in the neural network. Such range was defined empirically,
where we saw that there was not a significant difference in the accuracy of the
tracking. Our strategy, considering both changes in the network and the use of
optical flow during t frames, reduces the overall time for tracking and increases
the frame rate, as we can see in Table 4.5.

Similar to the OpenPose, we analyzed some limitations when our ap-
proach fails. We face the same problems with highly crowded images where
people are overlapping, and the approach tends to merge annotations from
different people while missing others(cao2017). Also, our application has less

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 58

GPU CPU OpenPose TensorPose
Nvidia Titan
RTX

Intel(R) Core I9(R) CPU
@ 3.3GHz

∼11. FPS ∼36.8 FPS

Nvidia Tesla
P40

Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz

∼10 FPS ∼34.43
FPS

Nvidia TITAN
Xp

Intel(R) Core I7(R) CPU
@ 3.3GHz

∼8.28 FPS ∼27 FPS

Nvidia RTX
2060

AMD Ryzen 7 1700 @
3.2GHz

∼6.121 FPS ∼18.27
FPS

Nvidia GTX
960

Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz

∼3.73 FPS ∼12 FPS

Table 4.5: Frame rate comparison between the OpenPose 1.3 and Tensor-
Pose.As we can see, our model surpasses in approximately 3x the performance
of the OpenPose model used as base.

precision when compared to previous work due to the factorized layers. It has
more difficulty to detect joints considering occlusion having a slight noise in
the inferred data. As we can see in table 4.8, this is not a significant problem
as the results are comparable and we still have a good performance gain.

4.10
Experiments with fully decomposed network

In terms of runtime performance comparisons, we began with the test of
the CNN processing. Considering just one image with 23 people, we compared
our approach with OpenPose. The tests were performed in a GPU Nvidia
RTX 2060 with 6GB of memory, where we vary the scale of the image tested
by a factor of 0.5 and repeat each test 1000 times. Our network achieves a
performance of almost 20 frames per second when a network resolution of
656 × 368. We also test a non factorized version of our network. In general,
for the same resolution, it has achieved a performance of almost 12 frames
per second. As we can see in Table 4.6, in average, our approach has a better
performance when compared with the OpenPose, considering our factorized
version.

We also perform tests in CPU. As we can see in Table 4.7, in average,
our approach has a better performance, considering frames per second, while
the original OpenPose is unpractical to be used.

Table 4.8 shows our results in contrast to OpenPose(cao2017, cao2018)
and AlphaPose(fang2017). In terms of precision and Recall, Alphapose has
the best results; however, it has a different approach that uses a top-down
strategy. It also is impractical to run this model in modest hardware systems.
In a High-end GPU, the AlphaPose runs over only 20 FPS. Since our model

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 59

Image Resolution OpenPose Ours
328 x 193 ∼55,08 ms ∼ 45 ms
656 x 368 ∼120.224 ms ∼ 51.26 ms
984 x 579 ∼174,75 ms ∼ 80.72 ms
1312 x 772 ∼320,18 ms ∼ 112 ms

Table 4.6: CNN processing time for OpenPose and our Model. We vary the
scale of the input tested by a factor of 0.5 considering 4 image scales. We do
this only for the network input, the final result is scaled in the original image
size.

Device OpenPose Ours
AMD Ryzen 7 1700 3.5GHZ 0.3 FPS 13 FPS
Mac Pro Intel Core I7 2.7GHZ 0.1 FPS 6 FPS

Table 4.7: CNN processing time for OpenPose and our Model in CPU.

is highly based on OpenPose and a bottom-up strategy, performance tests
with AlphaPose are out of scope. Figure 4.11 shows a visual comparison be-
tween the OpenPose and our technique. We consider the original architecture
of OpenPose proposed by Cao et al. (cao2017). Here, higher OKS means higher
overlap between predicted Keypoints and the ground truth. As we can see, our
model has a lower accuracy than OpenPose, which is mainly caused by our
proposed simplification on the convolutional layers. However, this simplifica-
tion promotes the advantage of having 9.3 times less operations(Schirmer2019)
in these layers than the original OpenPose(Schirmer2019). We have focused on
real-time application and our model’s use in low power devices, so this accuracy
loss does not represent significant problems. In Figure 4.11, we can see that
OpenPose presents a confusion between semantically similar parts of different
persons in this frame, while our method does not find this pattern.

Model AP 0.50 AP 0.75 AR 0.50 AR 0.75
AlphaPose 0.84 0.715 0.895 0.775
OpenPose 0.782 0.594 0.807 0.650
Ours 0.743 0.501 0.702 0.580

Table 4.8: Precision and Recall for AlphaPose, OpenPose and our model.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 60

Figure 4.11: Comparison between the OpenPose model and ours. The first
Figure (left) is generated by the OpenPose and the second by our model
(right). As we can see, our model is slightly less accurate than the original
work in particular cases, considering the exact position of a keypoint. Although,
OpenPose presents a confusion between semantically similar parts of different
persons in this frame. Also, our model do not consider all the feet keypoints.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 4. Neural Network Architectures for 2D Pose estimation 61

Figure 4.12: Results containing viewpoint variation and occlusion, which are
common characteristics in images. Images from COCO dataset.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



5
3D human pose estimation

In this chapter, we present the main aspects of our 3D pose estimation
model. We also show a new attention model for Graph Convolutional Neural
Networks called Semantic Graph Attention, an evolution of traditional Se-
mantic Graph Convolutions. Here we propose an improved graph convolution
operation called Semantic Graph Attention, which is derived from Semantic
Graph Convolutions (zhao2019). The primary motivation is creating a new
network model where we can learn both channel-wise weights for edges in the
graph, combine them with kernel matrices, and understand global and channel
inter-dependencies without using non-local layers. With this approach, we can
achieve state-of-the-art performance considering the error in millimeters from
3D human pose regression with only 1/4 of operations needed from previous
works. Finally, we present some applications for 3D computer animation, as
we can see in Figure 5.1.

Figure 5.1: Motion Capture using 3D pose estimation neural network for
Computer animation.

5.1
Graph Convolutional Networks

Following principles of regular Convolution Neural Networks, a Graph
Convolution Network can be considered a way to deal with arbitrary graph
structures(bruna2013, defferrard2016, kipf2016). This is highly related to our
approach to analyze human pose as a structured graph.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 63

Convolutional Graph Networks (GCNs) share the filter parameters in
the graph. The GCNs training stage consists in learning structures capable
of processing graph information from the node matrix X ∈ RN×D (N
nodes containing D features) and the adjacency matrix A ∈ R‖N‖×‖N‖

(defferrard2016, kipf2016).
Each layer is a non-linear function as in equation 5-1:

H(l+1) = f(H l, A), (5-1)

with H being the output of each layer and H0 = X. We can rewrite this
function as follows in equation 5-2 :

f(H l, A) = σ(AH lW l), (5-2)

where σ represents the LeakyRelu activation function andW the weight matrix
of the network layer. There are some limitations to this approach because
the multiplication by the matrix A would only consider features from the
neighborhood, but not from the node itself. This problem is addressed by
adding the identity matrix to A (A′ = A+ I).

Furthermore, A′ should be an unitary matrix to do not scale the vector of
features. We reach it by normalizing A′ rows using the Normalized Laplacian
Matrix D−1/2AD−1/2, where D−1 is the inverse of the diagonal matrix with
the degree of the graph nodes. Substituting in the previous equation, we have
equation 5-3:

f(H l, A) = σ(D′−1/2A
′
D
′−1/2H lW l). (5-3)

There are two clear disadvantages to make the graph convolution consid-
ering a regression to work on nodes with arbitrary topologies. The first one is
the kernel matrix W is shared by all the edges. As a result, the relationships
of neighboring nodes, i.e. internal structure, are not well explored. This is also
a limiting factor because the receptive field is fixed with ones (zhao2019), the
second disadvantage.

A CNN with a convolution kernel of size k × k learns k2 different
transformation matrices. The transformation matrices decode features within
the kernel spatial dimension. This formulation can be approximated by learning
a vector of weights ~ai for each position of a pixel in an image or a graph node,
and then combining them with a shared transformation matrixW (zhao2019).

We can transform an image to a graph by considering the pixels as nodes,
and two neighbor pixels being connected by an edge (8-connect neighborhood).
So, a kernel size k affects all pixels distant less than d = k − 1

2 . We can extend
this approach for GCNs by considering that a convolution in a graph using a

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 64

kernel of size d affects all nodes in a neighborhood of size d (zhao2019).
GCNs cannot handle directly with regression problems due the issue that

convolution filter shares the same weight matrix for all edges. Furthermore,
the filters just operate in a one step neighborhood. As a solution, Zhao et
al. (zhao2019) propose to add the weight matrix M to the graph convolution
process according to the equation 5-4.

f(H l, A) = σ(φ(A′ �M)H lW l), (5-4)
where the matrix M is a parameter to be learned on the network and φ is a
softmax function that normalizes the entries of each node, � is an element-wise
multiplication (Hadamard) that returns mij if aij = 1 or negative values with
large exponents after the softmax. In this approach, A works like a mask that
forces this to the i node in the graph.

Equation 5-5 shows how to to adapt the Equation 5-4 to adjust the idea
of multiple channels.

f(H l, A) = H l+1 = ||D+1
d=1 σ( ~wdH

lφ(A′ �Md)), (5-5)

where || represents a channel-wise concatenation and ~w is a vector representing
each line d of the transformation matrix W .

5.2
Attention block for Semantic Graph Convolutions

We are proposing a way to adapt SE-NET concepts (hu2018) to give
weights to the output features of semantic convolution. This can be related to
Global Context Networks(cao2019). We aim to solve the issues of precision and
computational complexity,considering both space storage and time complexity,
from previous related works.

Considering the computation of features for each node, the idea of adding
weights via element-by-element multiplication is natural. We intend to identify
inter-dependencies between node features. For this, we propose the following
gating mechanism for each channel after a regular SGC, where we learn a
matrix of weights, presented in equations 5-6 and 5-7:

g = A
′ � φ(M1)W l

1H
l, (5-6)

where g is composed by a softmax φ function over the entries of Matrix M1.
This hidden layer perform a dimensionality reduction, where it drastically
reduces the input space by a factor r where the kernel size of W l

1 ∈ R
C
r
×C .

The equation 5-7, represents the expansion back to the original input
size:

s(g) = α(A′ � φ(M2)σ1(g)W l
2), (5-7)

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 65

where kernels W l
2 ∈ RC×C

r , σ represent a LeakyRelu function, α represents
a sigmoid activation, C represents the number of features and r is defined
empirically. In our experiments, as in Hu et. al.(hu2018), we use a value r = 16.
With the output of function s(g) for each channel we perform an element-
by-element multiplication operation to give weights to the input data as in
equation 5-8:

H l+1 = H l ◦ s(g) (5-8)
At the final process, the channels were also concatenated. Such a gating

operation allows us to consider more relevant features after each convolution
operation and thus refine our regression process for the following pose estima-
tion case. As we will see in our experiments, this formulation enhanced our
neural network’s overall performance and drastically reduced its complexity.

5.3
3D neural network for pose estimation and Computer Animation Frame-
work

Figure 5.2: Our framework for 3D human pose estimation and computer
animation. Here we capture 2D keypoints e interactively regress it to a 3D
domain. After we generate 3D motion files and 3D animations in Blender.

We built a 3D human animation framework, where the extracted images
from a single RGB camera pass through a 2D pose machine and, after, send
the result to our 3D pose network. At the final step, we generate motion BVH
capture files. Such a framework can be used in computer animation, games, and
also in shared virtual experiences. One of our goals is to provide people with a
way to create 3D animations without specialized hardware easily. Each module
is independent in our architecture in terms of video processing, inference of
captured skeletons, information transmission, and 3D animation. Since all
models are decoupled, we can use different 2D pose networks to extract the 2D
keypoints. It depends on the user to choose the best model for the application

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 66

he is developing. Also, we built our framework aiming to be lightweight and
accessible. To do so, it does not need any specialized hardware or high-
end GPUs. This contributes to shared development experiences involving
motion capture, wherein in the context of working from home, in a multi-
user production session, creative teams can collaborate remotely. Figure 5.2
illustrates the elements of our framework.

For our 3D human pose regression, with the previous techniques, we
propose a new neural network capable of inferring human pose in 3D using
only a single camera. To do so, we first extract the 2D keypoints for each
person using a 2D neural network. Our neural network model only needs the 2D
keypoints output as its input for a 3D regression. This makes our architecture
flexible and not dependent on a neural network’s specific model to generate
keypoints.

Afterward, we develop a new neural network following the semantic
graph convolution with the gating mechanism. Our model comprises an input
layer with an SGC layer followed by batch normalization and a LeakyRelu
activation. The building blocks of our network’s internal layers are composed
of two SGC layers, also followed by batch normalization and LeakyRelu
activation. The output of the second SGC layer is used as the input for our
gating mechanism. This is repeated twice, and the blocks also use residual
connections. We consider 128 channels for 16 graph nodes in the internal layers,
where each node represents a human keypoint. The output layer comprises an
SGC layer with the 16 nodes and the 3D positions as output data.

The Figure 5.3 illustrates the design of our network that still has a
residual layer for refinement purposes.

Figure 5.3: Our model for the neural network to estimate the 3D keypoints.
Note that we have here 2 internal blocks that uses semantic graph structures
followed by an attention block. Also, at the end of each internal block we also
have a residual operation.

We sent our network’s output to a module that generates a configuration
file that can be used in Blender. We use it to create the necessary structure
for developing an animated skeleton and applying the captured data to 3D
models. This module can also generate JSON files to save our network’s output

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 67

configuration that includes the 2D and 3D keypoint’s positions and the camera
parameters. In Figure 5.4, we can see examples of our pose estimation capture.

The Rigify structure from Blender is used to automate the creation
of rigging controls and bones. We consider the armature, Meta-rigging, and
constraints. An armature in Blender is a type of object used for rigging. It
can be seen just as similar to a real skeleton consisting of many bones. These
bones can be moved around, and anything associated with them will move or
deform similarly. A meta-rig is an assembly of bone chains where each chain
is identified by the Connected attribute, specifying each bone’s parent. We
generate 3D normalized data for all keypoints for each analyzed frame. In
Blender, our script used for converting keypoints into an animated skeleton
has the following structures:

– For each keypoint there is an object of type Empty;

– We have a humanoid armature object called Meta-rig where:

– the Bone hip has the constraint copy location with target for the
Empty hip object;

– The other bones have the stretch to constraint with the target
related to the other Empty objects.

– An object type humanoid armature called Rig that will receive the
position and rotation of each Metarig bone:

– Bone hips has copy location and copy rotation constraints with
target for Meta-rig bone hips;

– The other bones have constraint copy rotation with target for the
relative bone in Meta-rig.

We convert the 3D captured data to an animated skeleton following a
fully automated strategy with our module called pose3dConvert. We generate
a BVH to provide the captured information to designers, engineers, and
animators, where it can be used for standalone animation or in commercial
software. To generate the BVH file, for each keypoint, the following actions
were performed:

– the x, y, z coordinates are copied to the location attribute of the Empty
object associated with this keypoint;

– A keyframe of type location is created for the Empty object associated
with the keypoint;

– The Rig object is selected;

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 68

– A BVH file is generated with the Export Animation Operator from
Blender.

Figure 5.4: Examples of 3D animations crated with our framework.We generate
a BVH to provide the captured data, where it can be used for standalone
animation or in commercial softwares.As we can see here these example were
created with the Human3.6 dataset. (ionescu2013)

5.4
Experimental Results

This section presents the training details of our model, including dataset
particularities, camera system, 3D regression, and hyperparameter analysis.

5.4.1
Datasets

We evaluated the proposed method using the Human3.6M dataset for
3D human pose estimation, following the standard protocol. This dataset
is publicly available, containing more than 3 million images and 3D data
captured by a MoCap system and the calculated 2D joints. The dataset
contains data from 7 people performing everyday activities such as walking,
eating, discussing, etc.

There are two different protocols to evaluate the model trained with
Human3.6M considering different approaches to split the data for training and

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 69

testing. The first protocol, called Mean Per Joint Position Error (MPJPE),
consider all four camera views for all subjects. We used 5 subjects for training
(1, 5, 6, 7 and 8) and 2 for testing (9 and 11). Furthermore, we calculate
the error of the predictions and the ground-truth after aligning them with
the root joint, in our experiments represented by the pelvis keypoint. The
second protocol is called Mean per-joint position error after rigid alignment
(P-MPJPE), which differs from the first protocol only on the alignment. We
used the same aforementioned division for training and testing. Moreover, we
utilize a rigid transformation to align the predictions with the ground-truth
data. All errors were analyzed in millimeters. We also use the COCO dataset
(lin2014), a state-of-the-art dataset for 2D human pose estimation in the wild.
We use this dataset for pre-training a 2D Convolutional Pose Machine and
generate 2D input for our method in a qualitative evaluation.

In a second experiment, we use the MPI-INF-3DHP dataset. It was
built over a state-of-the-art markerless motion capture system and provide
ground truth 3D annotations for humam poses. This can be used as an
alternative dataset to Human3.6, were it provide a large range of human
motions, interactions with objects and more varied camera viewpoints. In
addition to Human 3.6 and CPM detections, we test our approach with this
dataset to evaluate the accuracy and generalizability of our learned model. We
also use the 3D Percentage of Correct Keypoints (PCK) as evaluation metric.
As proposed by Mehta et al.(mehta2017monocular) , we pick a threshold of
150mm for the error, corresponding to roughly half of head keypoint size.

5.4.2
Camera Calibration

Following the same idea proposed by Martinez et al. (martinez2017) and
Zhao et al. (zhao2019), we implicitly use the camera calibration in 3D pose
prediction. It is impossible to the neural network infer the 3d joint positions
in an arbitrary coordinate space (martinez2017). We use the camera frame as
global coordinate and implicitly enabling more training data since we consider,
for a same subject, more than one camera information. We use the ground-
truth 2D joint locations provided in the dataset, following the four camera
views, to align the 3D and 2D poses as in the setting of Martinez et al.
(martinez2017).

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 70

5.4.3
2D to 3D keypoints

Our method can be seen as an unprojection of 2d joint locations to 3D
positions. First, we train our network considering the ground-truth for 2D and
3D joint positions from the Human3.6M. However, for a fair evaluation of our
method, we also train our network with 2D predictions from a Convolutional
Pose Machine (wei2016). It is natural to say that our model depends on the
quality of the output of a 2d pose detector, and achieves the best results
when we use as input the ground-truth 2D joint locations. We evaluate both
approaches in our quantitative and qualitative experiments.

We pre-trained a CPM with the COCO dataset (lin2014). The COCO
dataset skeleton has a different configuration for the human body structure,
following the order of keypoints when compared with Human3.6M. We convert
the output dictionary of this model to the Human3.6M and train our 3D
network.

All 2D keypoints were previously generated in this process. The COCO
skeleton has 18 joints considering five joints in the head. The Human3.6M
skeleton consists of 16 joints, and we define the spine joint as the root joint. To
convert to Human 3.6M and create the spine point, we consider the midpoint
between the lheap and rheap of COCO, and we discoursed the thorax joint.

Also, in a second approach, we train our network trained for on MPI-
INF-3DHP pose dataset (mehta2017monocular), comparing the performance
of our approach with different network architectures. This dataset is more
complex considering poses, clothing and skeleton structure. We use these data
to evaluate the robustness and generalizability of our method.

Our 3D network model was trained over 100 epochs, using the Adam
optimizer with a learning rate of 1e − 3, rate decay of 0.5, and batches of
size 128. We also use the Kaiming normal function to initialize the weights of
each layer. Furthermore, we use the minimum squared error as loss function.
We combine joint and bone constraints in human poses and use it in our loss
function, which is defined in a similar way that the one proposed by Zhao et
al. (zhao2019):

loss(B, J) =
M∑

i=1

∥∥∥B′i −Bi

∥∥∥+
K∑

i=1

∥∥∥J ′i − Ji

∥∥∥ , (5-9)

where J ′ are predicted 3D joint coordinates, B′ are bones computed from J ′,
J and B are corresponding ground-truth.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 71

5.4.4
Ablation Study and Network evaluation

We have also analyzed the impact of the chosen hyper-parameters and
architecture on the final result in testing. We trained our network with different
configurations and compared it to the baseline for SGCs (zhao2019) and the
baseline for 3D Pose Estimation (martinez2017). We considered the error
analysis for protocol 1. In the first test, we compare our model with the state-
of-art approaches following 2 configurations: with and without the attention
layer. Table 5.1 reports the result. Also, we analyse the impact of using as input
2D prediction from a CPM. We use a network configuration with attention
layers and 2 blocks and 128 channels per layer. Table 5.2 shows the quality
of 3D predictions depends from the input, since the error increases when we
use a pre-trained CPM in COCO dataset. We compare our approach with
the stage 2 of Xnect (mehta2020). The Xnect try to infer the 3D positions in
this stage. Our model surpass their results considering the ground-truth and
is competitive when using data from a CPM.

Our technique outperforms the state-of-the-art SGC (zhao2019) by
3.85%. Also, our model with attention layers surpass the model only with
regular SGCs (without attention) by almost 10%. It is noteworthy that our
approach has much fewer parameters, meaning that using the attention module
drastically reduces the network’s computational complexity and improves the
overall performance. We have approximately 41% fewer parameters than the
baseline SGC (zhao2019) and 95% fewer parameters than the model from
Martinez et al. (martinez2017).

Model # of Parameters MPJPE (mm)
SGC (zhao2019) 0.43 M 43.8

Martinez et al. (martinez2017) 4.29 M 45.5
Ours without attention (2 blocks and 128 ch) 0.16 M 46.71
Ours with attention (2 blocks and 128 ch) 0.18 M 42.11

Table 5.1: 3D pose regression errors and the parameter numbers of our networks
with different settings on Human3.6M.

Model MPJPE (mm) P-MPJPE (mm)
Ours (Ground Truth) 42.11 33.29
Ours (CPM detections) 75.40 59.91

Xnect (SIGGRAPH’20) (mehta2020) 63.6 -

Table 5.2: 3D pose regression errors with different inputs. We use 2D ground-
truth from Human3.6M and 2D predictions from a CPM. We compare our
results with the stage 2 output of the state-of-the-art (mehta2020). The
MPJPE metric for Xnect where obtained from the original paper.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 72

In a second test, our models were trained for over 100 epochs under three
configurations. The first is a model with two internal blocks and 64 channels,
the second is our regular model with two inner blocks, and in the third, we
use a model with four internal blocks and 128 channels. Table 5.3 shows that
with the second configuration our model performs better than the baseline
algorithm from Zhao et al. (zhao2019) and the other two configurations.

We evaluated our 3D unprojection model following the dataset Human
3.6M, not considering the influence from a 2D pose detector. Table 5.4 shows
the result using 2D Human3.6M ground-truth for training and testing. The
results are competitive and, on average, our performance is better than the
state-of-the-art.

Most methods have sophisticated frameworks (pavllo2019, rayat2018,
yang2018) or learning strategies. They were trained and focus on in-the-wild
images, propose end-to-end frameworks to generate the 3D pose directly from
images, consider temporal information and also use complex loss functions
(dabral2018learning, pavllo2019). Due more data variability and their proposed
constraints to reduce prediction error, it was expected that they have better
performance. However, this is not true. Our model surpass the previous works,
considering the MPJPE and P-MPJPE, proving the potential of the attention
layer. The tests consider each action of the motion capture dataset. Table 5.4
shows the error in millimeters for each step following protocol 1 MPJPE.

Our results on Human3.6M under protocol 2 (using a rigid alignment
with the ground-truth), are shown in Table 5.5. In most cases, our method
surpasses the previous works and has better performance on average. Note
that in some cases, our model has similar performance or worse than the
model from Dabra et al. (dabral2018learning). However, our approach has
fewer parameters to compute and do not need complex anatomically loss
functions or a sophisticated weakly supervised learning framework. Also, in
average, our model outperforms Dabra et al. (dabral2018learning) by 8.3%.

In Table 5.6, we compare the 3D pose output on the MPI-INF-3DHP

Model # Parameters MPJPE (mm)
Baseline ((zhao2019)) 0.43 M 43.8

2 blocks and 64 channels 0.06 M 43.88
2 blocks and 128 channels 0.18 M 42.11
4 blocks and 128 channels 0.36 M 43.04

Table 5.3: Evaluation of our parameters for the 3D pose estimation model. The
error is computing in the testing dataset. As we can see, our best configuration
has approximately 41% fewer parameters than the baseline achieving the state-
of-art performance

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 73

Protocol Direct Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walking WalkT Average
Martinez et al. ICCV’17 (martinez2017) 51.8 56.2 58.1 59 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Yang et al. CVPR’18 (yang2018) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Mehta et al. SIGGRAPH’17 (mehta2017) 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8 106.6 138.7 78.8 73.9 82.0 55.8 59.6 80.5
Hossain & Little ECCV’18 (rayat2018) 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3

Zhao et al CVPR’19 (zhao2019) 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
Pavllo et al. CVPR’19 (pavllo2019) 45.1 47.4 42.0 46.0 49.1 56.7 44.5 44.4 57.2 66.1 47.5 44.8 49.2 32.6 34.0 47.1

Dabra et al ECCV’18 (dabral2018learning) 44.8 50.4 44.7 49.0 52.9 43.5 45.5 63.1 87.3 51.7 61.4 48.5 37.6 52.2 41.9 52.1
Our Model (2 blocks, 128 ch) 39.82 44.14 36.54 40.27 41.64 48.19 42.39 39.33 49.64 59.06 41.66 42.2 41.59 31.02 34.15 42.1

Table 5.4: Results under Protocol 1 on Human3.6M (no rigid alignment in
post-processing). Note that in average our model surpasses the previous state-
of-the-art approach. The results of all approaches are obtained from the original
papers.

Protocol Direct Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walking WalkT Average
Martinez et al. ICCV’17 (martinez2017) 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 38.0 47.7

Yang et al. CVPR’18 (yang2018) 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7
Hossain & Little ECCV’18 (rayat2018) 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Pavllo et al. CVPR’19 (pavllo2019) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

Dabra et al. ECCV’18 (dabral2018learning) 28.0 30.7 39.1 34.4 37.1 28.9 31.2 39.3 60.6 39.3 44.8 31.1 25.3 37.8 28.4 36.3
Our Model (2 blocks, 128 ch) 28.14 33.75 31.49 31.15 32.92 38.16 31.86 30.20 41.52 48.82 33.65 32.72 32.87 24.94 27.08 33.29

Table 5.5: Results of protocol 2 on Human3.6M under rigid alignment in post-
processing. Note that in most cases, our model surpasses the previous works.
The results of all approaches are obtained from the original papers.

Model MPJPE (mm) 3D PCK
Vnect (mehta2017) 124.7 76.7

M3DHP (mehta2017monocular) 117.6 75.7
(mehta2018single) 122.2 75.2

Xnect (stage 2) (mehta2020) 98.4 82.8
Xnect (stage 3) (mehta2020) 115.0 77.8

(kanazawa2018) 124.2 72.9
Ours (2 blocks and 128 channels) 105.17 81.27

Table 5.6: Comparison on the single person MPI-INF-3DHP dataset. Top part
are methods designed and trained for single-person capture.The Xnect is multi-
person method, however we evaluate only single person predictions.

dataset (mehta2017monocular) using the using the 3DPCK (higher is better)
and MPJPE. We prove the robustness of our method, where for both metrics
we surpass the previous state-of-the-art approaches. Again, note that most
of these methods are built over sophisticated frameworks and are capable
to predict multi-person poses while our method can be seen as a 2D to 3D
unprojection.

Moreover, considering time performance, our 3D network took, on aver-
age, 10 seconds to evaluate 1062 poses from the 2D inference. The tests were
performed in a GPU Nvidia RTX 2060 with 6GB of memory, where we repeat
each test 1000 times. In terms of the number of parameters, our network has
0.18M, while the model proposed by Zhao et al.(zhao2019) has 0.48M. This
means that our network is lightweight and could be part of a full system that
infers 3D human pose in real-time.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 74

5.4.5
Qualitative results

Figure 5.5 illustrates some results generated using images from COCO
dataset (lin2014). Our model is able to accurately predict 3D poses from these
images indicating that it effectively encodes relationships among body joints
and can generalize the results to different situations. The input of the method
is the 2D joints generated using as Convolutional Pose Machine. However, our
model also has some limitations as we can see in the last row of figure 5.5. For
example, when using data predicted by a CPM, if the 2D detector output fails
to detect all body keypoints, it is impossible to our model recover the missing
information. Also, for in the wild examples, it is not uncommon to see images
with occluded or incomplete poses. Our model has difficulty to deal with these
cases. Both approaches proposed by Martinez et al. (martinez2017) and Zhao
et al. (zhao2019) have the same issue.

Figure 5.6 shows the results of our technique applied on Human3.6M. In
another approach, the input is generated by the method from Schirmer et. al.
(Schirmer2019), and from the output we created a BVH model to generate the
animation.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 75

Figure 5.5: Visual results of our method on in-the-wild images from COCO
dataset (lin2014) . In most cases, our technique can effectively predict 3d joints
in different situations. Small errors can be seen considering the image scale and
camera projection. In the last row, in an example with self-occlusion, our model
cannot predict data from incomplete data.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 5. 3D human pose estimation 76

Figure 5.6: Visual results of our method on Human3.6M (ionescu2013). As
we can see, our method is robust but still has minor issues considering joint
rotations. As we said before, our model focus only on project the human
keypoints in a 3D space.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



6
Realtime Applications

In this section, we present two real-time application which uses our
techniques for pose estimation. We called all modules of these applications
as Tensorpose project. In the next sections, we described the architecture’s
main aspects of real-time applications and a framework for Human digitization,
which uses our techniques.

6.1
Archictecture for realtime applications

We developed an architecture with the aim of being a platform for
the development of 2D and 3D applications that involve motion capture.
In this section, we will describe the general aspects of its architecture, as
well as the framework for network communication of different applications.
Such applications can be computer animation, games and also shared virtual
experiences. One of our goals is to provide developers with a way to create
environments for shared 2D or 3D experiences where users share a virtual
environment, but not necessarily at the same physical environment. In the
actual scenario of social distancing, this approach can enable people to work
remotely in a collaborative and low cost approach.

The motion capture data can be used to track the activities of users in this
kind of application. In our architecture, each module is independent in terms
of video processing, the inference of captured skeletons, temporal coherence,
and information transmission. Figure 6.1 represents the architecture model.

As one can see in Figure 6.1, the architecture model is composed by
several modules. Next we will describe the functionality of each one.

Pose Client This module is responsible for processing video data from
different cameras. Here, each frame is prepared using the OpenCV library
(bradski2008), where we also do an equalization of the histogram to improve
the contrast in the images and send the data to the inference module or the
temporal coherence module. In this case, here, the resolution of the image is
1280x960, and the network resolution is 656x386 to fit in GPU memory.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 78

Figure 6.1: TensorPose Architecture

Pose Inference This neural network module receives data from the pose
client and performs the inference of skeletons in an image. Also, a post-
processing is performed to solve the assignment problem. For each set of key
points detected and for each person, a dictionary is created, which contains
the 2D position of each body part and the connections between them. For each
recognized person is given an Id and their corresponding dictionary is added
to a list of tracked persons who are sent to the module responsible by the
instantiating objects, which will represent the capture of those people.

Zed SDK and Depth Front In this stage, which is an optional source, we use
the ZED stereo camera SDK (burbano2016)(gupta2017) for 3D data capture
without using a network for 3D prediction. This module was developed using
the Python API, where data from a 2D image is sent to the Pose Client to be
processed and the 3D data is sent to the depth module. However its use do not
achieve the same performance and precision of using our 3D neural network
approach. Also, this module is responsible for processing the depth data of

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 79

one or more ZED cameras and receiving intrinsic camera data. ZED has two
cameras separated by 12 cm, which capture a high-resolution 3D video of the
scene and estimate depth and motion by comparing the displacement of pixels
between the left and right images. This module stores a distance value Z for
each pixel in the image.

2D/3D Positions This part of the architecture receives data from the
positions inferred by the network and creates objects identifying each detected
person. In case of 2D, keeps the positions received in coordinates of the
image. In the case of 3D, it receives data from Front-Depth or from the 3D
neural network. It is also responsible for passing information to the temporal
coherence module, also processing the Kalman filter, identifying the points to
be tracked and ensuring the reference of the detected skeletons.

Temporal Coherence This module tracks the points using the Optical Flow
algorithm. It receives the initial data detected by the network, and every t

frames perform the tracking of the points.

Holojam Emitter Uses the Holojam platform to send the captured data via
the network. It is a Python client that communicates with the Holojam Server.
The Holojam platform is described in the following section.

6.2
Virtual enviroment communication by Holojam

Holojam is a virtual space sharing platform developed by the Future
Reality Lab of the New York University (masson2017). This platform consists
of the Holojam Node library and the Holojam SDK project. It enables content
creators to build complex location-based multiplayer VR experiences in a
simple and unified Unity project. The development framework provides an
extensible and clean interface, allowing rapid prototyping. Additionally, it
abstracts away specific VR hardware, promoting a flexible and customizable
creation of virtual reality experiences. We use the Holojam protocol framework
in our architecture to communicate applications with very low latency, and to
send motion capture information through the network, expanding the use to
not only VR applications.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 80

6.3
Holojam Node

We use the Holojam Node, which is a client-server library developed in
Node.js and targeted to applications running on a local network or over the
web. One of its main characteristics is to perform low-latency communication
between the various clients and the server. It consists of the following compo-
nents: relay, emitters, sinks, and clients.

The relay component is responsible for routing the messages (updates
and events) in a Holojam network. It acts both as a central server, which
collects data received through a preconfigured (upstream) address, as well as
performs a broadcast of this data through a multicast (downstream) address.

In addition to the relay in a Holojam network, there are also several
nodes, called endpoints. Endpoints are either emitters, which only send up-
stream data; sinks, which only receive data through the downstream; or clients
that receive downstream data and send upstream data. Holojam Node also pro-
vides a WebSocket interface where you can receive and transmit data over the
web.

6.4
Holojam Protocol

Packets routed through a network are either hosted or updated. An
update is essentially an array of flakes (generic Holojam objects). An event
has an array containing only one flake. There is also a notification that is an
abstraction of an event that includes just the label.

6.5
Holojam Objects

Holojam provides two types of objects: Nuggets and Flakes. These ob-
jects are defined through Google’s FlatBuffers Interface Description Language
(IDL). We use Flatbuffers to serialize data, as well as streaming data, because
it offers very low processing overhead. As follows, we present the structure of
the objects used.

Nugget Composition:

– It is event type or update. Default is update;

– It is mandatory to have an array of flakes.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 81

enum NuggetType : byte { UPDATE, EVENT }

// Message (update or event)
table Nugget {

scope : string; // Namespace
origin : string; // Source

type : NuggetType = UPDATE;
flakes : [Flake] (required);
// Data array

}

Flake Composition:

– A label is mandatory

table Flake { // Data container
label : string (required);

// Optional data

vector3s : [Vector3];
vector4s : [Vector4];

floats : [float];
ints : [int];
bytes : [ubyte];

text : string;
}

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 82

Figure 6.2: Holojam Architecture

6.6
Holojam SDK

The Holojam SDK project is a Unity3D project containing all the
elements needed to create a multiplayer virtual reality application. This project
provides a API that allows the application created to use or extend this
API allowing for rapid prototyping. Also, it abstracts the configuration of
the VR hardware used in the project. One of its main components is the
implementation of the Holojam client in . Thus, all Holojam objects can be
integrated easily into the Unity project.

6.7
Holojam and realtime applications

All components of the Holojam platform were used in the TensorPose
project applications, both in 2D applications as well as 3D and VR applica-
tions. Since TensorPose is implemented in Python, the components needed
to use Holojam in TensorPose were also deployed in Python, including a se-
rializer for the keypoints and the emitter. The serialization of the obtained
keypoints was implemented from the IDL FlatBuffers of Holojam. With this,
it is possible to send the keypoints to the relay, giving access to data to any
sink/client/websocket that is connected to this relay.

Figure 6.3 shows the components for various applications created in the
TensorPose project and to which other component they are related to.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 83

Figure 6.3: TensorPose network infrastructure. The Relay component is re-
sponsible for synchronizing and sending information over the network to the
clients of our applications.

Our applications were developed in 3 steps. The initial module was
developed for 2D applications where capture could be done through ordinary
cameras such as webcams. Each frame is captured and sent to the detection
module, which is in charge of performing the inference and detection of the
people in each frame. Subsequently, the data regarding the captured persons,
are sent via the net using the framework Holojam (masson2017).

In addition to the 2D capture, tests involving stereo cameras were also
conducted. We used the ZED camera to map three-dimensional coordinates of
the world from two-dimensional coordinates of images. The skeletal position
is initially processed in the same way, but, in a later step, it is transformed
into 3D space using intrinsic camera data and depth information. As in the
previous process, the capture and processing modules are independent, with
Holojam also being used to send information. Also, conisdering the use of just 1
monocular RGB camera, we explore our 3D neural network for pose estimation
in these applications. The data were sent in the same way.

Some applications were developed as a proof of concept using the Unity
3D engine as well as WebGL. Regarding applications in Unity3D, the data is
sent via the network by the Holojam Server, using multicast. Regarding the
3D scene in the Unity engine, "Holojam Unity" objects implement support
for multiplayer, which includes communication with the Holojam Server,

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 84

components with position recognition, and Avatar presence. These objects
have a script component called "Holojam Network", which contains some fields
indicating how to communicate with the server.

The "Multicast Address" field indicates the IP address used to receive
data from the server. This field is not relevant if there is already a unicast
connection between this client and the server since, in this case, the client will
receive the data directly from the server. The Server Address field can be used
to indicate the IP of the server directly. This address is used to send data to the
server, but if the indicated address is not local (not starting with 192), Holojam
will ping this address, which creates a connection between the server and this
client. All data that is sent and received uses an update data structure. When
Holojam sends an object, it uses the label “SendData" for such an update.
For the virtual characters, they are created from the tracked data of the real
person using inverse kinematics. A manager implemented in the application
reconstructs the entire body of the Actor from pairable elements corresponding
to the connections between hands, elbows, shoulders, neck, head, and so on.
The reconstructed data are used as targets for a 3D model in the scene. Figure
6.4 shows the Unity3D application.

The OpenPose also has a plugin for Unity 3D, although it is limited to
run the inference locally and do not achieve the necessary performance. Their
plugin often encounters problems when considering low cost GPUs, where it
consumes a lot of memory and frequently is necessary to run in CPU mode.
Also, unlike our application, their plugin does not deals with possibility to
create shared virtual experiences where the physical presence of users in the
same environment is not necessary. In our proposal, we can have a server
dedicated to inference, without the need to make intensive use of the local
machine. The entire project was developed considering network communication
using the low latency model of Holojam. All modules in the Figure 6.1 were
developed to be independent.

Similarly, a web application with a unicast connection was developed, as
we can see in Figure 6.5. The entire application was designed in javascript using
WebGL. A script called “Manager" was implemented, responsible for receiving
the data sent by the server, considering each object that identifies each person
tracked and the position of their skeleton. The Manager instantiates objects
called characters for the identification of actors, while still being in charge
of updating their positions to each frame. It also manages the removal of
actors from the scene, if they are no longer in it, or if the track has been lost.
Subsequently, the characters are rendered as a ragdoll using the position of
each part of their skeleton directly, not using inverse kinematics, in this case.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 85

Figure 6.4: Unity3D application with TensorPose. One of our use cases is the
development of applications that make use of shared virtual environments.

Figure 6.5: TensorPose web test.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 86

6.8
3D Human Digitization

3D motion capture, pose estimation, texture capture, and volumetric
capture are important tasks to generate content for computer animation, in
particular for human Digitization. Kanazawa et al. (kanazawa2018) show an
end-to-end framework for reconstructing a full 3D mesh of a human body
from a single RGB image. They used the generative human body model,
SMPL(loper2015), which parameterizes the mesh by 3D joint angles and low-
dimensional linear shape space. An image is passed through a convolutional
encoder and sent to a 3D regression module that infers the 3D representation of
the human. This mesh can be useful to generate humanoid animations, which
could immediately be used by animators.

When we consider volumetric capture in a studio, this is not only a
costly technology but also depends on specialized hardware. Moreover, it
is far from being accessible to most producers. We can find solutions that
present alternative ways to reduce the cost and computational processing for
this kind of application. For example, Pandey et al. .(pandey2019volumetric)
proposed a method to synthesize free-viewpoint renderings using a single
RGBD camera. Besides the impressive results, it seems to be far to be
applicable in real situations. Also, considering texture capture, Saito et al.
(saito2019pifu) introduce Pixel-aligned Implicit Function (PIFu), which is an
implicit representation that locally aligns pixels of 2D images with the global
context of their corresponding 3D object, although their techniques seem to
be computationally intensive.

Despite the independent advances in each area, there is still no proposal
that uses texture capturing, pose estimation, and mesh recovery in a unified
way to generate virtual characters using an accessible and low-cost architec-
ture. We have developed a low cost and accessible end-to-end framework for
3D modeling and texture capture of Humans using deep neural networks and
a single RGB camera. We create an end-to-end approach to generate virtual
characters based on image segmentation, pose estimation, and human mesh
recovery(HMR). We apply the HMR method (kanazawa2018) to the captured
data to generate 3D shape models and finally combine with the generated tex-
tures to obtain a full 3D reconstruction of the human body that can be used
in a game engine.

We divided our method into two stages: texture extraction from a set of
images I and the 3D modeling. For texture extraction, we use the DensePose
model (alp2018densepose) to generate our texture atlas.They propose a variant
of a Mask-RCNN, to densely regress part-specific UV coordinates within every

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 87

human region at images or videos. Since we have I images with different views
as input, we produce N partial atlas and after we compose them. Using this
model, we can extract each pixel that relates to a specific body part of a
person detected in each image. While the original article, seeks to provide a
texture transfer, i.e., mapping textures previously provided to image pixels
based on estimated correspondences, we aim to do the inverse. We map each
pixel of an estimated coordinate into a correspondent pixel in a texture atlas.
In other words, DensePose predicts the UV coordinates of 24 body parts, and
we compute a look-up table to convert the DensePose UV maps to the SMPL
UV parameterization (loper2015). Figure 6.6 show the processe to generate
the UV maps.

Figure 6.6: DensePose process to extract the texture atlas (alp2018densepose).

We also use partial convolutions(liu2018image) to fill small gaps in the
texture since using the previous method is not possible to fill the entire
UV maps. In this model, the convolution is masked and re-normalized to
be conditioned on only valid pixels. We use the textures provided by the
SURREAL dataset (varol2017learning) in the training process, where we create
patches of size 32 × 32 for each image, and also do data augmentation by
rotating and using noise to create different masks.

Another problem is the color discontinuity between the parts of the
mapped textures. This discontinuity is caused by different illumination con-
ditions while capturing the images due to the fact the pictures are taken by
modifying the relative position between the camera and light source. To solve
this problem, we subdivide the atlas following the part division of DensePose
and use a method similar to presented by Junior(junior2006variational). Con-
sidering the frontier between the parts, we use a method that diffuses the
color difference between the frontier zone of adjacent areas for each part. Let
r be the radius distance considering each frontier edge; for each point in the
line, we calculate the color difference between corresponding texels and, after
with these correction factors, perform a diffusion of them over the whole tex-
ture space. As proposed by junior et al. (junior2006variational), we consider
sparsely-defined texels as heat sources and solve the problem applying the dif-

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 6. Realtime Applications 88

fusion equation on each heat source, which represents the flow of heat from
that source. The factors between frontier edges remain fixed, and other values
are relaxed across the image.

In our second stage, considering the 3D model, we aim to generate the
model from an initial pose. We use our pose estimation models for this task.
We use our 2D pose estimation model to capture the 2D joint positions.
Subsequently, the obtained data is sent to the HMR method to infer the 3D
mesh adapted from the captured person. The input for HMR is a 2D set of
joints and a RGB image. Figure 6.7 show the results our approach.

Figure 6.7: 3D reconstructed models. Here we apply the texture captured in
the first step over the mesh gerenerated by the second.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



7
Conclusion

In this work we proposed a novel deep neural network with streamlined
architecture and tensor decomposition for pose estimation with improved pro-
cessing time, named TensorPose. We adopted it on a real-time motion capture
multi-user interactive application. Considering our results, we show an efficient
optimization in the CNN model, where in major cases represents 3× the perfor-
mance of the original work. The accuracy of the detection of keypoints shows
to be slightly smaller. However, this fact does not represent great problems
in our applications, since our primary objective is the performance gain, when
considering FPS. As we showed in Figure 4.12 some failure cases were detected,
but do not represents major problems in our applications. Also, we present a
statistic to each kind of error detected. In an evolution for the 2 model, we
also presente a new deep neural network with a lightweight architecture, at-
tention blocks, and tensor decomposition for pose estimation with improved
processing time. We provided an efficient optimization in the CNN model when
considering its use in modest GPU hardware and CPU. This is a result of our
factorized convolutions involving the Tensor decomposition theory. In paral-
lel to handcrafted approaches for factorized models, this can be considered
a technique with great potential. We explored the weakness of convolutional
neural networks using attention mechanisms as an auxiliary method to focus
on global information for our applications besides the local neighborhood. The
redundancy in the parameters of Convolutional Pose Machines following tensor
decompositions and attention mechanisms was significantly reduced. However,
as in OpenPose and CPMs, our model faces problems in predict keypoints
considering occlusion and crowded images.

We also present a novel model for attention layers in Semantic Graph
Convolutions. With this approach, we build a lightweight 3D human pose
estimation model to project 2D keypoints from the output of a convolutional
pose machine in a 3D space. To do that, our model can be seen as a
regression from 2D to 3D keypoints. We use camera parameters implicitly,
using the camera attributes from Human3.6. As we can see in the experiments,
the combination of SGCs with attention layers improves the performance
and reduce the overall complexity of our model and we achieve state-of-

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Chapter 7. Conclusion 90

the-art performance with 41% fewer parameters. This model takes as input
the 2D keypoints inferred from our 2D neural networks, which impacts the
performance of the 3D prediction. As a limitation of our model, we need as
input all 2D keypoints predicted. If the 2D model misses one of them, this
impacts the performance of the 3D regression.

As a proof of concept, we present two main applications using Unity3D
and WebGL, integrated with Holojam platform. We show that it is possible to
create shared projects for motion capture with the TensorPose.

As future works, we intend to adapt our models to embedded devices,
such as cellphones, and create mobile applications. We believe that our
framework can be very useful for people easily create 3D animations in a
simple way, without any specialized hardware.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography

[Schirmer2019] SILVA, L. J. S.; DA SILVA, D. L. S.; RAPOSO, A. B.; VELHO,
L. ; LOPES, H. C. V.. Tensorpose: Real-time pose estimation for
interactive applications. Computers & Graphics, 85:1 – 14, 2019.

[Senst2016] SENST, T.; GEISTERT, J. ; SIKORA, T.. Robust local optical
flow: Long-range motions and varying illuminations. In: IEEE IN-
TERNATIONAL CONFERENCE ON IMAGE PROCESSING, p. 4478–4482,
Phoenix, AZ, USA, Sept. 2016. IEEE. IEEE Catalog Number: CFP16CIP-USB
ISBN: 978-1-4673-9960-9 DOI:10.1109/ICIP.2016.7533207.

[alp2018densepose] ALP GÜLER, R.; NEVEROVA, N. ; KOKKINOS, I.. Dense-
pose: Dense human pose estimation in the wild. In: PROCEEDINGS
OF THE IEEE CONFERENCE ON COMPUTER VISION AND PATTERN
RECOGNITION, p. 7297–7306, 2018.

[babenko2009] BABENKO, B.; YANG, M.-H. ; BELONGIE, S.. Visual Tracking
with Online Multiple Instance Learning. In: CVPR, 2009.

[bahdanau2014] BAHDANAU, D.; CHO, K. ; BENGIO, Y.. Neural machine
translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[bello2019] BELLO, I.; ZOPH, B.; VASWANI, A.; SHLENS, J. ; LE, Q. V..
Attention augmented convolutional networks. arXiv preprint
arXiv:1904.09925, 2019.

[bradski2008] BRADSKI, G.; KAEHLER, A.. Learning OpenCV: Computer
vision with the OpenCV library. " O’Reilly Media, Inc.", 2008.

[bruna2013] BRUNA, J.; ZAREMBA, W.; SZLAM, A. ; LECUN, Y.. Spectral
networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203, 2013.

[burbano2016] BURBANO, A.; VASILIU, M. ; BOUAZIZ, S.. 3d cameras
benchmark for human tracking in hybrid distributed smart
camera networks. In: PROCEEDINGS OF THE 10TH INTERNATIONAL

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 92

CONFERENCE ON DISTRIBUTED SMART CAMERA, p. 76–83. ACM,
2016.

[cao2017] CAO, Z.; SIMON, T.; WEI, S.-E. ; SHEIKH, Y.. Realtime multi-
person 2d pose estimation using part affinity fields. In: CVPR,
2017.

[cao2018] CAO, Z.; HIDALGO, G.; SIMON, T.; WEI, S.-E. ; SHEIKH, Y..
OpenPose: realtime multi-person 2D pose estimation using Part
Affinity Fields. In: ARXIV PREPRINT ARXIV:1812.08008, 2018.

[cao2019] CAO, Y.; XU, J.; LIN, S.; WEI, F. ; HU, H.. Gcnet: Non-local net-
works meet squeeze-excitation networks and beyond. In: PRO-
CEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COM-
PUTER VISION WORKSHOPS, p. 0–0, 2019.

[chen2017dual]

[chui2017] CHUI, C. K.; CHEN, G. ; OTHERS. Kalman filtering with Real-
Time Applications. Springer, 2017.

[cichocki2009] CICHOCKI, A.; ZDUNEK, R.; PHAN, A. H. ; AMARI, S.-I..
Nonnegative matrix and tensor factorizations: applications to
exploratory multi-way data analysis and blind source separation.
John Wiley & Sons, 2009.

[dabral2018learning] DABRAL, R.; MUNDHADA, A.; KUSUPATI, U.; AFAQUE,
S.; SHARMA, A. ; JAIN, A.. Learning 3d human pose from structure
and motion. In: PROCEEDINGS OF THE EUROPEAN CONFERENCE
ON COMPUTER VISION (ECCV), p. 668–683, 2018.

[de2000] DE LATHAUWER, L.; DE MOOR, B. ; VANDEWALLE, J.. A multi-
linear singular value decomposition. SIAM journal on Matrix Analysis
and Applications, 21(4):1253–1278, 2000.

[defferrard2016] DEFFERRARD, M.; BRESSON, X. ; VANDERGHEYNST, P..
Convolutional neural networks on graphs with fast localized
spectral filtering. In: ADVANCES IN NEURAL INFORMATION PRO-
CESSING SYSTEMS, p. 3844–3852, 2016.

[deng2009] DENG, J.; DONG, W.; SOCHER, R.; LI, L.-J.; LI, K. ; FEI-FEI, L..
Imagenet: A large-scale hierarchical image database. In: 2009 IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION,
p. 248–255. Ieee, 2009.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 93

[fang2017] FANG, H.-S.; XIE, S.; TAI, Y.-W. ; LU, C.. Rmpe: Regional
multi-person pose estimation. In: PROCEEDINGS OF THE IEEE
INTERNATIONAL CONFERENCE ON COMPUTER VISION, p. 2334–2343,
2017.

[ge2018] GE, L.. Real-time 3D hand pose estimation from depth
images. PhD thesis, 2018.

[gupta2017] GUPTA, T.; LI, H.. Indoor mapping for smart cities—an
affordable approach: Using kinect sensor and zed stereo camera.
In: 2017 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING
AND INDOOR NAVIGATION (IPIN), p. 1–8. IEEE, 2017.

[he2016deep] HE, K.; ZHANG, X.; REN, S. ; SUN, J.. Deep residual learning
for image recognition. In: PROCEEDINGS OF THE IEEE CONFERENCE
ON COMPUTER VISION AND PATTERN RECOGNITION, p. 770–778,
2016.

[he2016identity] HE, K.; ZHANG, X.; REN, S. ; SUN, J.. Identity mappings
in deep residual networks. In: EUROPEAN CONFERENCE ON COM-
PUTER VISION, p. 630–645. Springer, 2016.

[howard2017] HOWARD, A. G.; ZHU, M.; CHEN, B.; KALENICHENKO, D.;
WANG, W.; WEYAND, T.; ANDREETTO, M. ; ADAM, H.. Mobilenets:
Efficient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[hu2018] HU, J.; SHEN, L. ; SUN, G.. Squeeze-and-excitation networks.
In: PROCEEDINGS OF THE IEEE CONFERENCE ON COMPUTER VISION
AND PATTERN RECOGNITION, p. 7132–7141, 2018.

[hu2018] HU, J.; SHEN, L.; ALBANIE, S.; SUN, G. ; VEDALDI, A.. Gather-
excite: Exploiting feature context in convolutional neural net-
works. In: ADVANCES IN NEURAL INFORMATION PROCESSING SYS-
TEMS, p. 9401–9411, 2018.

[huang2017densely] HUANG, G.; LIU, Z.; VAN DER MAATEN, L. ; WEIN-
BERGER, K. Q.. Densely connected convolutional networks. In:
PROCEEDINGS OF THE IEEE CONFERENCE ON COMPUTER VISION
AND PATTERN RECOGNITION, p. 4700–4708, 2017.

[huang2020] HUANG, Q.; ZHOU, F.; HE, J.; ZHAO, Y. ; QIN, R.. Spatial–
temporal graph attention networks for skeleton-based action
recognition. Journal of Electronic Imaging, 29(5):053003, 2020.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 94

[ioannou2017deep] IOANNOU, Y.; ROBERTSON, D.; CIPOLLA, R. ; CRIMIN-
ISI, A.. Deep roots: Improving cnn efficiency with hierarchical
filter groups. In: PROCEEDINGS OF THE IEEE CONFERENCE ON COM-
PUTER VISION AND PATTERN RECOGNITION, p. 1231–1240, 2017.

[ioffe2015batch] IOFFE, S.; SZEGEDY, C.. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[ionescu2013] IONESCU, C.; PAPAVA, D.; OLARU, V. ; SMINCHISESCU, C..
Human3. 6m: Large scale datasets and predictive methods for
3d human sensing in natural environments. IEEE transactions on
pattern analysis and machine intelligence, 36(7):1325–1339, 2013.

[jin2014] JIN, J.; DUNDAR, A. ; CULURCIELLO, E.. Flattened convolu-
tional neural networks for feedforward acceleration. arXiv preprint
arXiv:1412.5474, 2014.

[jonker1987] JONKER, R.; VOLGENANT, A.. A shortest augmenting path
algorithm for dense and sparse linear assignment problems.
Computing, 38(4):325–340, 1987.

[junior2006variational] JUNIOR, J. S.. Variational Texture Atlas Construc-
tion and Applications. PhD thesis, IMPA, 2006.

[kanazawa2018] KANAZAWA, A.; BLACK, M. J.; JACOBS, D. W. ; MALIK, J..
End-to-end recovery of human shape and pose. In: PROCEEDINGS
OF THE IEEE CONFERENCE ON COMPUTER VISION AND PATTERN
RECOGNITION, p. 7122–7131, 2018.

[kim2009] KIM, J.-S.; HWANGBO, M. ; KANADE, T.. Realtime affine-
photometric klt feature tracker on gpu in cuda framework.
In: 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER
VISION WORKSHOPS, ICCV WORKSHOPS, p. 886–893. IEEE, 2009.

[kim2015] KIM, Y.-D.; PARK, E.; YOO, S.; CHOI, T.; YANG, L. ; SHIN, D..
Compression of deep convolutional neural networks for fast and
low power mobile applications. arXiv preprint arXiv:1511.06530, 2015.

[kipf2016] KIPF, T. N.; WELLING, M.. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[kolda2009] KOLDA, T. G.; BADER, B. W.. Tensor decompositions and
applications. SIAM review, 51(3):455–500, 2009.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 95

[kossaifi2019] KOSSAIFI, J.; BULAT, A.; TZIMIROPOULOS, G. ; PANTIC, M..
T-net: Parametrizing fully convolutional nets with a single high-
order tensor. In: PROCEEDINGS OF THE IEEE CONFERENCE ON
COMPUTER VISION AND PATTERN RECOGNITION, p. 7822–7831, 2019.

[krizhevsky2012imagenet] KRIZHEVSKY, A.; SUTSKEVER, I. ; HINTON, G. E..
Imagenet classification with deep convolutional neural networks.
In: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, p.
1097–1105, 2012.

[lin2014] LIN, T.-Y.; MAIRE, M.; BELONGIE, S.; HAYS, J.; PERONA, P.; RA-
MANAN, D.; DOLLÁR, P. ; ZITNICK, C. L.. Microsoft coco: Common
objects in context. In: EUROPEAN CONFERENCE ON COMPUTER
VISION, p. 740–755. Springer, 2014.

[lin2017] LIN, M.; LIN, L.; LIANG, X.; WANG, K. ; CHENG, H.. Recurrent
3d pose sequence machines. In: PROCEEDINGS OF THE IEEE CON-
FERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, p.
810–819, 2017.

[liu2018image] LIU, G.; REDA, F. A.; SHIH, K. J.; WANG, T.-C.; TAO, A. ;
CATANZARO, B.. Image inpainting for irregular holes using partial
convolutions. In: PROCEEDINGS OF THE EUROPEAN CONFERENCE
ON COMPUTER VISION (ECCV), p. 85–100, 2018.

[long2015fully] LONG, J.; SHELHAMER, E. ; DARRELL, T.. Fully convo-
lutional networks for semantic segmentation. In: PROCEEDINGS
OF THE IEEE CONFERENCE ON COMPUTER VISION AND PATTERN
RECOGNITION, p. 3431–3440, 2015.

[loper2015] LOPER, M.; MAHMOOD, N.; ROMERO, J.; PONS-MOLL, G. ;
BLACK, M. J.. Smpl: A skinned multi-person linear model. ACM
transactions on graphics (TOG), 34(6):248, 2015.

[luo2018] LUO, Y.; REN, J.; WANG, Z.; SUN, W.; PAN, J.; LIU, J.; PANG, J.
; LIN, L.. Lstm pose machines. In: PROCEEDINGS OF THE IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION,
p. 5207–5215, 2018.

[martinez2017] MARTINEZ, J.; HOSSAIN, R.; ROMERO, J. ; LITTLE, J. J..
A simple yet effective baseline for 3d human pose estimation.
In: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON
COMPUTER VISION, p. 2640–2649, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 96

[masson2017] MASSON, T.; PERLIN, K. ; OTHERS. Holo-doodle: an adap-
tation and expansion of collaborative holojam virtual reality. In:
ACM SIGGRAPH 2017 VR VILLAGE, p. 9. ACM, 2017.

[mehta2017] MEHTA, D.; SRIDHAR, S.; SOTNYCHENKO, O.; RHODIN, H.;
SHAFIEI, M.; SEIDEL, H.-P.; XU, W.; CASAS, D. ; THEOBALT, C.. Vnect:
Real-time 3d human pose estimation with a single rgb camera.
ACM Transactions on Graphics (TOG), 36(4):44, 2017.

[mehta2017monocular] MEHTA, D.; RHODIN, H.; CASAS, D.; FUA, P.; SOTNY-
CHENKO, O.; XU, W. ; THEOBALT, C.. Monocular 3d human pose
estimation in the wild using improved cnn supervision. In: 2017
INTERNATIONAL CONFERENCE ON 3D VISION (3DV), p. 506–516. IEEE,
2017.

[mehta2018single] MEHTA, D.; SOTNYCHENKO, O.; MUELLER, F.; XU, W.;
SRIDHAR, S.; PONS-MOLL, G. ; THEOBALT, C.. Single-shot multi-
person 3d pose estimation from monocular rgb. In: 2018 INTER-
NATIONAL CONFERENCE ON 3D VISION (3DV), p. 120–130. IEEE, 2018.

[mehta2020] MEHTA, D.; SOTNYCHENKO, O.; MUELLER, F.; XU, W.; EL-
GHARIB, M.; FUA, P.; SEIDEL, H.-P.; RHODIN, H.; PONS-MOLL, G. ;
THEOBALT, C.. Xnect: Real-time multi-person 3d motion cap-
ture with a single rgb camera. ACM Transactions on Graphics (TOG),
39(4):82–1, 2020.

[pandey2019volumetric] PANDEY, R.; TKACH, A.; YANG, S.; PIDLYPENSKYI,
P.; TAYLOR, J.; MARTIN-BRUALLA, R.; TAGLIASACCHI, A.; PAPAN-
DREOU, G.; DAVIDSON, P.; KESKIN, C. ; OTHERS. Volumetric cap-
ture of humans with a single rgbd camera via semi-parametric
learning. arXiv preprint arXiv:1905.12162, 2019.

[pavllo2019] PAVLLO, D.; FEICHTENHOFER, C.; GRANGIER, D. ; AULI, M..
3d human pose estimation in video with temporal convolutions
and semi-supervised training. In: PROCEEDINGS OF THE IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION,
p. 7753–7762, 2019.

[rabanser2017] RABANSER, S.; SHCHUR, O. ; GÜNNEMANN, S.. Introduc-
tion to tensor decompositions and their applications in machine
learning. arXiv preprint arXiv:1711.10781, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 97

[ramachandran2019] RAMACHANDRAN, P.; PARMAR, N.; VASWANI, A.;
BELLO, I.; LEVSKAYA, A. ; SHLENS, J.. Stand-alone self-attention
in vision models. arXiv preprint arXiv:1906.05909, 2019.

[ramakrishna2014] RAMAKRISHNA, V.; MUNOZ, D.; HEBERT, M.; BAGNELL,
J. A. ; SHEIKH, Y.. Pose machines: Articulated pose estimation via
inference machines. In: EUROPEAN CONFERENCE ON COMPUTER
VISION, p. 33–47. Springer, 2014.

[ranjan2019] RANJAN, R.; PATEL, V. M. ; CHELLAPPA, R.. Hyperface: A
deep multi-task learning framework for face detection, landmark
localization, pose estimation, and gender recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 41(1):121–135, 2019.

[rayat2018] RAYAT IMTIAZ HOSSAIN, M.; LITTLE, J. J.. Exploiting tempo-
ral information for 3d human pose estimation. In: PROCEEDINGS
OF THE EUROPEAN CONFERENCE ON COMPUTER VISION (ECCV), p.
68–84, 2018.

[ren2015faster] REN, S.; HE, K.; GIRSHICK, R. ; SUN, J.. Faster r-cnn: To-
wards real-time object detection with region proposal networks.
In: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, p.
91–99, 2015.

[ruggero2017] RUGGERO RONCHI, M.; PERONA, P.. Benchmarking and er-
ror diagnosis in multi-instance pose estimation. In: PROCEEDINGS
OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION,
p. 369–378, 2017.

[saito2019pifu] SAITO, S.; HUANG, Z.; NATSUME, R.; MORISHIMA, S.;
KANAZAWA, A. ; LI, H.. Pifu: Pixel-aligned implicit function
for high-resolution clothed human digitization. arXiv preprint
arXiv:1905.05172, 2019.

[sandler2018] SANDLER, M.; HOWARD, A.; ZHU, M.; ZHMOGINOV, A. ;
CHEN, L.-C.. Mobilenetv2: Inverted residuals and linear bottle-
necks. In: PROCEEDINGS OF THE IEEE CONFERENCE ON COMPUTER
VISION AND PATTERN RECOGNITION, p. 4510–4520, 2018.

[santurkar2018does] SANTURKAR, S.; TSIPRAS, D.; ILYAS, A. ; MADRY, A..
How does batch normalization help optimization?(no, it is not
about internal covariate shift). arXiv preprint arXiv:1805.11604, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 98

[schwarcz2018] SCHWARCZ, S.; POLLARD, T.. 3d human pose estimation
from deep multi-view 2d pose. In: 2018 24TH INTERNATIONAL
CONFERENCE ON PATTERN RECOGNITION (ICPR), p. 2326–2331. IEEE,
2018.

[simonyan2014very] SIMONYAN, K.; ZISSERMAN, A.. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[sindagi2018] SINDAGI, V. A.; PATEL, V. M.. A survey of recent advances
in cnn-based single image crowd counting and density estima-
tion. Pattern Recognition Letters, 107:3–16, 2018.

[smith2017] SMITH, S.; KARYPIS, G.. Accelerating the tucker decomposi-
tion with compressed sparse tensors. In: EUROPEAN CONFERENCE
ON PARALLEL PROCESSING, p. 653–668. Springer, 2017.

[song2017] SONG, J.; WANG, L.; VAN GOOL, L. ; HILLIGES, O.. Thin-slicing
network: A deep structured model for pose estimation in videos.
In: PROCEEDINGS OF THE IEEE CONFERENCE ON COMPUTER VISION
AND PATTERN RECOGNITION, p. 4220–4229, 2017.

[srivastava2015training] SRIVASTAVA, R. K.; GREFF, K. ; SCHMIDHUBER,
J.. Training very deep networks. In: ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS, p. 2377–2385, 2015.

[su2019] SU, K.; YU, D.; XU, Z.; GENG, X. ; WANG, C.. Multi-person pose
estimation with enhanced channel-wise and spatial information.
In: PROCEEDINGS OF THE IEEE CONFERENCE ON COMPUTER VISION
AND PATTERN RECOGNITION, p. 5674–5682, 2019.

[symeonidis2010] SYMEONIDIS, P.; NANOPOULOS, A. ; MANOLOPOULOS,
Y.. A unified framework for providing recommendations in
social tagging systems based on ternary semantic analysis. IEEE
Transactions on Knowledge and Data Engineering, 22(2):179–192, 2010.

[szegedy2015going] SZEGEDY, C.; LIU, W.; JIA, Y.; SERMANET, P.; REED,
S.; ANGUELOV, D.; ERHAN, D.; VANHOUCKE, V. ; RABINOVICH, A..
Going deeper with convolutions. In: PROCEEDINGS OF THE IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION,
p. 1–9, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 99

[szegedy2016rethinking] SZEGEDY, C.; VANHOUCKE, V.; IOFFE, S.; SHLENS,
J. ; WOJNA, Z.. Rethinking the inception architecture for com-
puter vision. In: PROCEEDINGS OF THE IEEE CONFERENCE ON COM-
PUTER VISION AND PATTERN RECOGNITION, p. 2818–2826, 2016.

[szegedy2017inception] SZEGEDY, C.; IOFFE, S.; VANHOUCKE, V. ; ALEMI,
A. A.. Inception-v4, inception-resnet and the impact of residual
connections on learning. In: THIRTY-FIRST AAAI CONFERENCE ON
ARTIFICIAL INTELLIGENCE, 2017.

[toshev2014deeppose] TOSHEV, A.; SZEGEDY, C.. Deeppose: Human pose
estimation via deep neural networks. In: PROCEEDINGS OF THE
IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNI-
TION, p. 1653–1660, 2014.

[tsai2012] TSAI, D.; FLAGG, M.; NAKAZAWA, A. ; REHG, J. M.. Motion
coherent tracking using multi-label mrf optimization. International
journal of computer vision, 100(2):190–202, 2012.

[tucker1966] TUCKER, L. R.. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, 1966.

[tung2017] TUNG, H.-Y.; TUNG, H.-W.; YUMER, E. ; FRAGKIADAKI, K.. Self-
supervised learning of motion capture. In: ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS, p. 5236–5246, 2017.

[varol2017learning] VAROL, G.; ROMERO, J.; MARTIN, X.; MAHMOOD, N.;
BLACK, M. J.; LAPTEV, I. ; SCHMID, C.. Learning from synthetic
humans. In: PROCEEDINGS OF THE IEEE CONFERENCE ON COM-
PUTER VISION AND PATTERN RECOGNITION, p. 109–117, 2017.

[vaswani2017] VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.;
JONES, L.; GOMEZ, A. N.; KAISER, Ł. ; POLOSUKHIN, I.. Attention is
all you need. In: ADVANCES IN NEURAL INFORMATION PROCESSING
SYSTEMS, p. 5998–6008, 2017.

[velivckovic2017] VELIČKOVIĆ, P.; CUCURULL, G.; CASANOVA, A.; ROMERO,
A.; LIO, P. ; BENGIO, Y.. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[wang2017] WANG, M.; LIU, B. ; FOROOSH, H.. Factorized convolutional
neural networks. In: PROCEEDINGS OF THE IEEE INTERNATIONAL
CONFERENCE ON COMPUTER VISION, p. 545–553, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 100

[wang2019] WANG, K.; LIN, L.; JIANG, C.; QIAN, C. ; WEI, P.. 3d human
pose machines with self-supervised learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(5):1069–1082, 2019.

[wei2016] WEI, S.-E.; RAMAKRISHNA, V.; KANADE, T. ; SHEIKH, Y.. Con-
volutional pose machines. In: PROCEEDINGS OF THE IEEE CON-
FERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, p.
4724–4732, 2016.

[woo2018] WOO, S.; PARK, J.; LEE, J.-Y. ; SO KWEON, I.. Cbam: Convo-
lutional block attention module. In: PROCEEDINGS OF THE EURO-
PEAN CONFERENCE ON COMPUTER VISION (ECCV), p. 3–19, 2018.

[wu2020] WU, Z.; PAN, S.; CHEN, F.; LONG, G.; ZHANG, C. ; PHILIP, S. Y.. A
comprehensive survey on graph neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[xie2017aggregated] XIE, S.; GIRSHICK, R.; DOLLÁR, P.; TU, Z. ; HE, K..
Aggregated residual transformations for deep neural networks.
In: PROCEEDINGS OF THE IEEE CONFERENCE ON COMPUTER VISION
AND PATTERN RECOGNITION, p. 1492–1500, 2017.

[xu2018] XU, K.; HU, W.; LESKOVEC, J. ; JEGELKA, S.. How powerful are
graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

[yang2018] YANG, W.; OUYANG, W.; WANG, X.; REN, J.; LI, H. ; WANG, X..
3d human pose estimation in the wild by adversarial learning.
In: PROCEEDINGS OF THE IEEE CONFERENCE ON COMPUTER VISION
AND PATTERN RECOGNITION, p. 5255–5264, 2018.

[zhao2019] ZHAO, L.; PENG, X.; TIAN, Y.; KAPADIA, M. ; METAXAS, D. N..
Semantic graph convolutional networks for 3d human pose re-
gression. In: PROCEEDINGS OF THE IEEE CONFERENCE ON COM-
PUTER VISION AND PATTERN RECOGNITION, p. 3425–3435, 2019.

[zhou2016] ZHOU, S.; VINH, N. X.; BAILEY, J.; JIA, Y. ; DAVIDSON, I.. Ac-
celerating online cp decompositions for higher order tensors. In:
PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFER-
ENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, p. 1375–1384.
ACM, 2016.

[zhou2018] ZHOU, J.; CUI, G.; ZHANG, Z.; YANG, C.; LIU, Z.; WANG, L.; LI,
C. ; SUN, M.. Graph neural networks: A review of methods and
applications. arXiv preprint arXiv:1812.08434, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA



Bibliography 101

[zhou2018] ZHOU, X.; ZHU, M.; PAVLAKOS, G.; LEONARDOS, S.; DERPANIS,
K. G. ; DANIILIDIS, K.. Monocap: Monocular human motion
capture using a cnn coupled with a geometric prior. IEEE
transactions on pattern analysis and machine intelligence, 41(4):901–914,
2018.

DBD
PUC-Rio - Certificação Digital Nº 1621800/CA


	Semantic graph attention networks and tensor decompositions for computer vision and computer graphics
	Resumo
	Table of contents
	Introduction
	Related Work
	Convolutional Neural Networks
	Attention in Neural Networks
	Graph Neural Networks 
	Pose Machines and Tracking
	3D Pose Estimation
	Motion Capture

	Tensor Decomposition
	Matrix Decomposition
	Tensor Properties
	Kruskal form of a Tensor
	Hadamard Product
	Kronecker Product
	Khatri-Rao Product
	Tucker Decomposition

	Neural Network Architectures for 2D Pose estimation
	2D Pose Estimation Model
	2D Partially Decomposed Model
	Fully Decomposed Model
	Attention block
	Factorized Convolutions
	Proposed Architecture and Experimental details
	Architecture
	Training
	Experiments with partially decomposed network
	Experiments with fully decomposed network

	3D human pose estimation
	Graph Convolutional Networks
	Attention block for Semantic Graph Convolutions
	3D neural network for pose estimation and Computer Animation Framework
	Experimental Results
	Datasets
	Camera Calibration
	2D to 3D keypoints
	Ablation Study and Network evaluation
	Qualitative results


	Realtime Applications
	Archictecture for realtime applications
	Virtual enviroment communication by Holojam
	Holojam Node
	Holojam Protocol
	Holojam Objects
	Holojam SDK
	Holojam and realtime applications
	3D Human Digitization

	Conclusion
	Bibliography

