XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: MODELAGEM DAS PROPRIEDADES DO TIO2 NA PREVISÃO DO BAND GAP UTILIZANDO REDES NEURAIS ARTIFICIAIS Autor: ANNITA DA COSTA FIDALGO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
BRUNNO FERREIRA DOS SANTOS - ORIENTADOR
SONIA LETICHEVSKY - COORIENTADOR
Nº do Conteudo: 51016
Catalogação: 28/12/2020 Liberação: 28/12/2020 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51016&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51016&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.51016
Resumo:
Título: MODELAGEM DAS PROPRIEDADES DO TIO2 NA PREVISÃO DO BAND GAP UTILIZANDO REDES NEURAIS ARTIFICIAIS Autor: ANNITA DA COSTA FIDALGO
SONIA LETICHEVSKY - COORIENTADOR
Nº do Conteudo: 51016
Catalogação: 28/12/2020 Liberação: 28/12/2020 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51016&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51016&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.51016
Resumo:
O dióxido de titânio é amplamente utilizado pela indústria e pesquisa como
fotocatalisador, cuja principal desvantagem ainda é sua aplicação sob luz
visível. Propriedades como quantidade de fases, tamanho do cristalito, área
de superfície específica, volume de poros e valor da banda proibida (Eg)
são explorados por métodos de síntes e para aprimorar a performance do
TiO2. No entanto, elas são ajustadas empiracamente. O presente trabalho
foi realizado a fim de descrever uma relação analítica entre essas propriedades para a fotocatálise, usando Redes Neurais Artificiais (RNAs) como
ferramente estatística. Afim de ter o banco de dados mais representativo,
foram usados 53 artigos. O Eg foi considerado a medida a qual avalia a performance fotocatalítica, sendo o parâmetro de saída da rede. Dois blocos A
e B, distintos pelas variáveis de entrada, foram arranjados em grupos para
investigar a influência das variáveis em pares, com 257 e 220 fotocatalisadores para cada, respectivamente. Exploraram-se diferentes algoritmos de
treinamento (baseados em Retropropagação), tipos de redes (Feedforward,
Cascade forward e Elman), funções de transferência, número de neurônios
e redemulticamadas. Avaliaram-se os modelos pela Soma dos Erros Quadráticos (SSE),pelo coeficiente de correlação de regressão (R2) tanto para
o treinamento e quanto para o teste, pelo comportamento de predição do
banco de dados e pelo diagrama de regressão dos valores preditos pelos observados. Os resultados do bloco A sugerem que as variáveis não aparentam
ter uma relação. Os modelos de múltiplas camadas no bloco B revelaram um
aumento no desempenho. O resultado de maior coeficiente teve topologia
de 4-4-6-1, correspondendo a camada de entrada, primeira camada oculta,
segunda camada oculta e camda de saída, respectivamente. Obteve-se R2
de 84 por cento para o treinamento e 50 por cento para o teste, com SSE de 2.24.Esse
resultado sugere que a rede não é capaz de prever o Eg, mas ela pode ser
aprimorada. Os parâmetros estruturais devem ser revisados, de acordo com
padrões de caracterizações e dados estatísticos. Consequentemente, o modelo pode ser bem ajustado, otimizado e usado na melhoria da fotocatálise.
Descrição | Arquivo |
NA ÍNTEGRA |