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Abstract

Fidalgo, Annita; Ferreira dos Santos, Brunno; Letichevsky, Sonia.
Modelling of TiO, properties for the band gap prediction
using Artificial Neural Networks. Rio de Janeiro, 2020. 122p.
Masters Dissertation — Department of Chemical and Materials
Engineering, Pontifical Catholic University of Rio de Janeiro.

Titanium dioxide has been widely applied by industry and scientific research
as a photocatalyst, whose main drawback still has been the application un-
der visible light. Properties such as phases amount, crystallite size, specific
surface area, pore volume, and band gap value (Eg) have been explored by
synthesis methods to improve TiOy’s performance. However, they are empi-
rically adjusted. The present work was carried out to describe an analytical
relation between those properties for photocatalysis, using Artificial Neu-
ral Networks (ANNSs) as a statistical tool. Aiming the most representative
set, 53 literature papers were used for the database. Eg was considered the
measurement which evaluates the photocatalytic performance, namely the
network’s output variable. Two blocks A and B, which are distinguished by
input variables, were arranged into groups to investigate the variables pair
influences, using 257 and 220 photocatalysts vectors for each, respectively.
Modelling attempts examined different training algorithms (based on Back-
propagation), types of networks (Feedforward, Cascade forward and Elman),
transfer functions, number of hidden neurons, and multilayer network. The
developed models were evaluated by the sum of squared error (SSE), the
correlation coefficient (R?) of regression for both training and test data,
the prediction behaviour of the dataset, and the regression diagram of pre-
dicted and observed values. The block A results suggest the variables do
not have an apparent relationship. Multilayers models on block B revea-
led an increase of network identification performance. The result with the
highest coefficient showed 4-4-6-1 topology; corresponding, respectively, to
input, first hidden, second hidden and output layers. It had R? of 84 % for
training and to 50 % for test, with SSE of 2.24. This result suggests this
network is not able to predict the Eg, but it can be improved. The structural
properties should be reviewed, according to standards of characterization
and statistical data. Hence, the model could be well fitted, optimized, and

used for photocatalysis improvement.

Keywords

Titanium dioxide; = Photocatalyst;  Feedforward backpropagation;

Cascade forward backpropagation;  Elman backpropagation.
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Resumo

Fidalgo, Annita; Ferreira dos Santos, Brunno (Orientador); Leti-
chevsky, Sonia (Co-Advisor). Modelagem das propriedades do
TiO- na previsao do band gap utilizando Redes Neurais
Artificiais. Rio de Janeiro, 2020. 122p. Dissertacao de mestrado
— Departamento de Engenharia Quimica e de Materiais, Pontificia
Universidade Catélica do Rio de Janeiro.

O dioxido de titanio é amplamente utilizado pela industria e pesquisa como
fotocatalisador, cuja principal desvantagem ainda é sua aplicacao sob luz
visivel. Propriedades como quantidade de fases, tamanho do cristalito, area
de superficie especifica, volume de poros e valor da banda proibida (Eg)
sao explorados por métodos de sintese para aprimorar a performance do
TiO,. No entanto, elas sao ajustadas empiracamente. O presente trabalho
foi realizado a fim de descrever uma relacdo analitica entre essas proprie-
dades para a fotocatélise, usando Redes Neurais Artificiais (RNAs) como
ferramente estatistica. A fim de ter o banco de dados mais representativo,
foram usados 53 artigos. O Eg foi considerado a medida a qual avalia a per-
formance fotocatalitica, sendo o parametro de saida da rede. Dois blocos A
e B, distintos pelas variaveis de entrada, foram arranjados em grupos para
investigar a influéncia das varidveis em pares, com 257 e 220 fotocatalisa-
dores para cada, respectivamente. Exploraram-se diferentes algoritmos de
treinamento (baseados em Retropropagacao), tipos de redes (Feedforward,
Cascade forward e Elman), fungdes de transferéncia, nimero de neurénios
e rede multicamadas. Avaliaram-se os modelos pela Soma dos Erros Qua-
draticos (SSE), pelo coeficiente de correlagio de regressio (R?) tanto para
o treinamento e quanto para o teste, pelo comportamento de predi¢ao do
banco de dados e pelo diagrama de regressao dos valores preditos pelos ob-
servados. Os resultados do bloco A sugerem que as variaveis nao aparentam
ter uma relacao. Os modelos de miltiplas camadas no bloco B revelaram um
aumento no desempenho. O resultado de maior coeficiente teve topologia
de 4-4-6-1, correspondendo a camada de entrada, primeira camada oculta,
segunda camada oculta e camda de saida, respectivamente. Obteve-se R?
de 84 % para o treinamento e 50 % para o teste, com SSE de 2.24. Esse
resultado sugere que a rede nao ¢ capaz de prever o Eg, mas ela pode ser
aprimorada. Os parametros estruturais devem ser revisados, de acordo com
padroes de caracterizagoes e dados estatisticos. Consequentemente, o mo-

delo pode ser bem ajustado, otimizado e usado na melhoria da fotocatalise.
Palavras-chave

Dioxido de titanio; Fotocatalisador; Retropropagacao Feedforward;

Retropropagacao Cascade forward;  Retropropagacao Elman.
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1
Introduction

Titanium dioxide was the key for photocatalysis progress. The singularity
of TiO is due to its high stability, efficient photoactivity, low cost and huge
potential for many applications [1, 2, 3, 4]. However, TiO5 can only work under
ultraviolet light, which is its main drawback.

The solar radiation is the most abundant light source [1, 5], of which
photoreactions could be strongly benefit. The UV-light corresponds only of 5
% of that source, the visible light 43 % and the infrared 52 %. Therefore, the
TiOy performance is very limited when solar radiation is applied.

Many strategies have been investigated to improve TiO, performance
enabling it to work under visible light, such as heterojunction formation and
metal dopping. The modifications are strongly explored on synthesis routes
and they have been reported through the crystalline structure, surface area
and band gap evaluation by literature. [5, 6]

The modifications are always carried out in order to get a better perfor-
mance of the catalyst in the studied reaction. The performance can be assessed
by the band gap measurement or an experimental process. For example, the
hydrogen production rate or the concentration of dye removal. For optimiza-
tion of catalytic tests, computational intelligence has been strongly applied
[7,8,9, 10, 11].

Artificial Neural Networks (ANN) is a technique of computational intelli-
gence for modelling. It works based on biological neurons, where an information
is given, processed and concluded. Not only this information is passed forward
but also the system learns from it, improving itself. Then, ANNs are used as
a tool for prediction, identification and controlling. [12]

On Scopus platform, ANN has been used for chemical, process and
materials engineer in addition to photocatalysis application since 2015. These
studies are interconnected by their title, abstract or keywords, as shown on
Figure 1.1. The focus is on catalysis keyword, with 14 keywords directly
connected. The size of each circle corresponds to each influence (or strength)
and each colour corresponds to each subject cluster found by the program.
Thus, ANN studies are connect to titanium dioxide and photocatalysis, and

all are from a different cluster of knowledge, symbolized by colours.
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Figure 1.1: Articles from Scopus with keywords: ANN, Photocatalysis and
Engineers - chemical, materials and process from 2015 to 2019 by VOSviewer
1.6.15.

ANN modelling has been well succeed for complex systems implementa-
tion. Besides that, each model is unique according to its application and its
methodology development. [12, 13]

For instance in photocatalysis, Owolabi, T. et al. [14] used neural
models to predict the band gap of doped titanium dioxide from crystal lattice
distortion. This investigation helps to understand the mechanism, properties
and their mathematical relationships.

The present work assessed TiO, properties contemplating Materials
Science fundamentals in an emerging area of Computational tools. This study
attempted to establish a unique model and it aimed the construction of a large
database from literature, exploring different types of ANN.

This work is arranged in 8 chapters. The chapter 2 presents general
and specific objectives. The next chapter is a literature review of TiOs,
characterization techniques and ANNs. Furthermore, there is presented a
correlation with them and photocatalysis. The chapter 4 shows data acquisition
and ANN development within the methodology. The next chapter presents and
discusses the results. The chapter 6 is a conclusion of this study. The chapter
7 has suggestions for future research and the chapter 8 has supplementary

information such as the code, additional data and weights and biases.
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2

Objective

General objective was to develop a model for prediction of the band gap as a

direct variable of photocatalysis using data from the literature and analysing it

carefully. Therefore, to be able to generalize predictions for different scenarios

and estimate the effects of variables.

Specific objectives

Use only TiOy photocatalysts;
Build a large database, exploring and analysing literature reports;

Nominate the most relevant characteristics studied, establishing the

variables;

Use ANN as a tool to obtain a relationship between titanium dioxide

characteristics;

Implement different types of ANN: Feedforward, Cascade forward and

Elman Backpropagation;
Develop and validate ANN models;

Discuss its impact on photocatalysis.
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3

Literature Review

This chapter reviews important subjects for the comprehension and
discussion of this study. The following sections are the Titanium dioxide,
Characterization techniques and Artificial Neural Network. In the end of each

one, articles are compared with the present work goals.

3.1
Titanium dioxide

The titanium dioxide (TiO2) assumes three stable crystalline structures,
namely anatase, rutile, and brookite (Figure 3.1). The latter has an orthorhom-
bic structure and the other two, tetragonal. The brookite phase is barely stud-

ied because it is metastable and because of its synthesis conditions. [15]

3.1(a): Anatase 3.1(b): Rutile 3.1(c): Brookite

Figure 3.1: Mlustration of crystalline structures of TiO,. Adapted from Costa
(2018).

The rutile is the stablest thermodynamic phase. However, for nanometric
dimensions, the anatase is more propitious to occur according to its lower
Surface Free Energy than rutile. Then, the anatase phase can be synthesized
at low temperatures and have an irreversible phase transformation for rutile

at high temperatures. 3, 16]
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3.1.1
Band theory

The TiOs is heavily used as a photocatalyst because of its semiconductor
properties, as a consequence of its band structure. When atoms or molecules
make a chemical bond, their orbitals overlap, increasing its total energy.
The energy is discrete due to its electronic structure, according to the Pauli
exclusion principle. In a solid-state, where the crystalline system is a periodic
lattice of a unit cell, the energy levels highly increase and get too nearer,
assuming a block form called a band. [17, 18]

As a consequence of orbital and wave functions theory, there are at least
two peaks (minimum and maximum) that are, for the band theory, namely
Valence Band (VB), the occupied energy level, and Conduction Band (CB), the
non occupied one. In addition, Homo is the highest occupied molecular orbital
and Lumo, the lowest unoccupied molecular orbital. The energy difference
between them is the band gap value (Eg). The Figure 3.2 exemplifies the band
theory [17].

Semiconductors have narrow band gaps that include their thermody-
namic equilibrium, or also known as the Fermi level (Er) with zero energy. It
is worth mentioning that it is a convention in physics for an atom resting in the
infinite, without interaction. Hence, an electron (e~) from VB is easily excited
to CB, generating a hole (h") in its place, also known as pair electron-hole.

Therefore, the energy difference is the band gap value. [17]

E [eV]

Figure 3.2: Tllustration of Band theory. Adapted from Kittel (1976).
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3.1.2
Photocatalysis

In photocatalysis, incident photon on the catalyst surface must an energy
equal or larger than the catalyst band gap. As in catalysis, the pair electron-
hole does not participate in the global reaction, but in the mechanism. Thus,
each application, each photocatalyst, and each crystalline structure has a
specific mechanism.

The TiO, phases have different band gap values. Anatase is reported to
have 3.2 eV and Rutile 3.0 eV [5]. Moreover, they have different transitions
types, that is how the pair electron-hole occurs. Whereas anatase has an
indirect transition, rutile and brookite have a direct one. The transition type
refers to the distance between the bands, considering the first Brillouin zone,
that is, the first magnitude of reciprocal space [17]. If both Homo and Lumo are
in the same wave vector, it is a direct transition. Otherwise, it is an indirect
transition, because a phonon is also needed to preserve the conservation of

momentum and energy (Figure 3.3). [17, 19]

E[eV] E [eV]

CB
Lumo
} E
g
Homo
VB VB
wave vector wave vector
3.3(a): Direct 3.3(b): Indirect

Figure 3.3: Illustration of transition types. Adapted from Kittel (1976).

The photon energy is classified according to the spectrum of the wave-
length as ultra-violet (UV - until 400 nm), visible (Vis 400 - 750 nm) and
infrared (over 750 nm). Despite the fact that TiOs can be observed in three
different crystalline phases with its own band gaps, all of them work under UV
light. This is a disadvantage for the photocatalyst performance because UV
light is an expensive resource. Furthermore, there are more abundance light
sources, that is, 95 % of solar spectrum is over UV-light wavelength range.

The band gap energy is one of the main characteristic of materials that

have been explored for a higher photocatalytic performance [16, 20]. Then,
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strategies have been explored, such as doping and heterojunction. In general,
the improvement of photocatalysis can be splitted into the modification of
photocatalysts and external conditions, according to Kou et al. 2017 [6]. Each
system has a specific light source, temperature and chemical solution. On the
other hand, the same photocatalyst can have different shape, band gap or
surface effect.

For instance, a commercial TiO, widely employed, Evonik P25, is a
mixture of anatase and rutile that ranges around 65-80:35-20 wt% [3, 21] for
a better catalytic performance [22, 23]. Besides, it is a nanometric powder.
However, neither the reason of its outstanding photocatalytic performance

under UV light nor quantitative relation of this mixture is well known.

3.13
Applications

The TiOq applications are typically for hydrogen production [5, 24, 25,
26, 27, 28, 29, 30], decomposition of organic molecules [7, 8, 31, 32] and
decomposition of pollution [5, 33, 34].

The photocatalytic water splitting (Figure 3.4) is a classical application
scenario, where the mechanism is initialized with a photon incidence on TiOq
surface, generating a pair electron-hole. It involves two major reactions of
reduction—oxidation (redox), for water protonation and hydrogen formation.

[4, 5]

E [eV]

H' ﬂHZ >
AE=1.23¢eV

.
hvses

Figure 3.4: Tllustration of water splitting mechanism. Adapted from Jafari
(2016).

Considering the Pourbaix Diagram, the standard potential energy of
redox is null for hydrogen formation and 1.23 V for oxygen formation from
water (Equation 3-1). Thus, the minimum energy for photocatalysis is AE =
1.23 eV. [5].
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2H* +2e~ — H, E°,=0 1%
H,O + 2kt — 2HT + 10, EJ, =-1.23 V (3-1)
HQO — Hy + %OQ AFE =123 eV

In the case of pollutant degradation, Carbajo et al. [34] explored the
application of TiOy synthesized via sol-gel, carrying out to control the crys-
tallite size and the phase transitions of anatase-rutile. The authors studied
these properties because they affect the photocatalytic performance, which is
the same consideration of this present work. They also suggested the photo-
catalytic performance description should use photocatalyst properties. Unlike
most of the related literature, the results of Cabajo et al. [34] refuted the op-
timum point of anatase-rutile mixture, due to the highest photodegradation
rate be a 100 % anatase sample in their studies. Besides the idea of having
an optimized TiO, photocatalyst, they did not quantify the influences on the
catalytic performance, that is, a mathematical relationship that explains the

best (or worst) performance.
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3.2
Characterization techniques

A few characterization techniques are here briefly reviewed, namely
X-Ray Diffraction, UV-Vis Diffuse Reflectance Spectroscopy and Nitrogen
Physisorption. They are commonly used in photocatalyst studies to measure
the crystalline phases, the crystallite size, the specific surface area, the pore

diameter, the pore volume and the band gap value.

3.2.1
X-Ray Diffraction

The X-Ray Diffraction (XRD) is the main technique for crystalline struc-
ture determination. It is based on the light scattering and interference. The
Bragg’s law determines the angles for a constructive interference of incident
X-ray photons. The Equation 3-2 describes it, where d is the interplanar dis-
tance, # is the angle of incidence, n is a positive integer and A is the wavelength
of the incident wave. Copper radiation is most frequently used and it has A¢,
= 1.5418 A.

2dsing = n\ (3-2)

Hence, materials and phases can be identified and quantitatively eval-
uated. For example, the mean crystallite size can be evaluated by either the
Scherrer equation application to a single peak or from Rietveld refinement

that fits all the peaks of the pattern and apply the full width at half maximum
(FWHM — Scherrer equation) or Voigt Integral Breadth (LVolIB). [23, 35, 36].

3.2.2
UV-Vis Diffuse Reflectance Spectroscopy

The Diffuse Reflectance Spectroscopy (DRS) is a technique used for op-
tical constants, thickness and transitions investigation. It is highly applied on
semiconductors, especially for photocatalysis purpose. The band gap measure-
ment is based on the reflection coefficient of the photocatalyst surface by an
incident light, according to the scattering condition.

The qualitative evaluation of this technique requires mathematical meth-
ods that depends on sample preparation, such as, the particle size and sam-
ple packaging. For example, the Kubelka-Munk theory for the band gap cal-
culation. It is obtained by the straight-line fit intersection of the respective
reflectance function, considering the proper band gap transition, and the irra-

diation energy, according to Equation 3-3 where R is the diffuse reflectance, S
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the scattered light factor, e the molar absorption coefficient and C the sample
concentration. [16, 37, 38|.

(1-R)?* €C
F(R) = ——=— 3-3

()= = (33)
Moreover, this theory has been improved. The Tauc plot method employs

a modified Kubelka-Munk according to equation Equation 3-4. The modified
function is obtained after applying an energy hr (Planck’s constant and light

frequency, respectively) according to an electronic transition n.

(F(R) x hv)Y/" (3-4)
Through the Kubelka-Munk plot F(R) x E, the Tauc method estimates
the band gap value and transition type according to Equation 3-5, where « is

the extinction coefficient and A the absorption constant.

ax () = A((hv) — E,)" (3-5)

The transition type usually appears named as Kubelka-Munk modified
for F(R)'/™ and as Tauc Plot for o x (hv)}/™. The value of n is 1/2 for a direct
allowed transition, 2 for an indirect allowed, 3/2 for a direct forbidden and 3
for an indirect forbidden. [38]

Another approach is the direct use of radiation absorption. The straight-
line fit intersection of absorbance coefficient and wavelength gives the band gap
value, using the Planck—Einstein relation (equation 3-6 where E is the energy
of a photon, h the Planck constant, v the frequency, ¢ the speed of light, A the
wavelength).

E=hw= h§ (3-6)

All evaluations types may result in different band gap values, illustrated
in Figure 3.5 for a generic material, adapted from TiOy measurements of Lopez
and Gémes, 2012 [38].
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N

300 350 400 A [nm]

Intersection hine

Absorbance —

No transition evaluation

No transition evaluation

Indirect transition

Direct transition

Figure 3.5: Exaggerated graphical representation of band gap measurements
methods by DRS for a generic material. Adapted from Loépez (2012).

3.23
Nitrogen Physisorption

The physical adsorption of nitrogen molecules on a solid surface is
a technique used for surface evaluation, such as specific surface area and
pore volume. The analysis usually uses the Brunauer-Emmett-Teller (BET)

method, which is based on the relative pressure variation until gas saturation.
[16]

3.24
Characterization in Photocatalysis

In Llorca et al. [30], the characterization was carried out to measure the
crystalline structure, the dimensions of particle size, the surface area and the
band gap of titania and the photocatalyst samples that used the titania as a
support. This study applied Tauc plot in DRS technique. The characterization
values supported analysis properties and enable the formulation of a trend for
hydrogen production. According to them and their reaction conditions, the
TiO, nanotubes had the best result for the non decorated sample pristine

TiO,, which showed better performance than the standard P25 sample.
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3.3
Artificial Neural Networks

Artificial Neural Network (ANN) is a statistical method able to identify
correlations between elements, usually applied in complex systems. It works
based on biological neural circuit, which is an amount of neural interconnec-
tions that gives information through synapses. This cell structure has basically
three main parts: the dendrite, which receives an information, the body, which
process the information and the axon, which moves the information forward.

Artificial neurons are similarly arranged in layers namely input (or also first
layer), hidden and output, shown in Figure 3.6. [39, 13, 40, 41]

Dendrite Body Axon
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Figure 3.6: Comparison of biological and artificial neurons.

3.3.1
Neuron structure

A neuron is constituted by weights and biases, which measure the variable
relevance and degree of freedom. A weight affects the information magnitude
and the bias is a polarization term attached for each neuron. All information
provided is rated by mathematical functions. On these terms, there are n inputs
T (21, T2, ..., T,), which have a respective weight w, = (wy, wa, ..., wy,), that
are activated by a transfer giving one output value §, according to the decision

equation that is the sum of input times weight plus bias (Equation 3-7). If
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that sum is equal or greater than the neuron threshold (), the signal goes
forward. After that, the § could be used as output value for the output neuron
or either as input for another hidden neuron. It is worth mentioning that the
network can have several output vectors, here was considered one, just for the
system simplicity. [13, 40, 42]

n

i=1

The connection of the neurons establishes the network. A simple ANN
is represented on Figure 3.7, where n input values are connected to j neurons
from a single layer. Each neuron has the influences of weights and bias, where
the information given pass through a generic function limier. The output
information from all neurons generates the single output value §. This network
only passes the information forward and it does not have a feedback from the

output to the input, thus it is called as non recurrent network. [39, 40, 41, 42]

INPUT Layer OUTPUT
VALUES VALUE

Figure 3.7: A generic feedforward network with a single layer.

The weights and biases values are provided and adjusted during the learn-
ing process, whose aim is to make the network able to reproduce a requested
output group from a particular input group, for example for Classification. This
is the training step that can be classified into supervised and non supervised.
[13, 42]
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3.3.2
Training categories

The supervised training has a value vector from the requested output
group, that is, the output value is known. So, the network learning is developed
based on minimization of the error from that observed value (y) to that
predicted value by the network (§), after the model be fed back by the inputs
x, information. The training data is used for the adjustment of weights and
biases during the learning process and the test data for the network evaluation.

On the other hand, the non supervised training does not require the
output information. Because this process is able to get statistical properties
from the training dataset, classify them into similarity groups. Thus, that set

must be sufficient to recognize a pattern and generate an output value. [42]

3.33
ANN architecture

The network architecture is as important as the learning process, because
the quantity of hidden layers, types of networks, the quantity of neurons,

transfer and activation functions are chosen for each problem.

3.3.3.1
Number of hidden layers

A hidden layer is the layer that is neither directly connected to input
nor output. So, it can have a different amount of neurons. A multilayer ANN
has more than one hidden layer. It is widely applied for recurrent networks for
complex systems, allowing more synapses, that is, interconnections. However,
having a more sophisticated process is not indicative of a good network.
Figure 3.8 illustrates a multilayer ANN with two hidden layers, where each

one has a different number of hidden neurons, j and z respectively.
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INPUT Hidden layer 1 Hidden layer 2 OUTPUT
VALUES VALUE

Figure 3.8: A generic feedforward network multilayer.

3.3.3.2

Number of hidden neurons

The number of neurons on the layers is a variable of the network
development. For the input layer, the neurons are the input variables of the
system and for the output layer, the output variable. On the other hand, the
numbers of neurons on the hidden layers can be changed.

The number of hidden neurons must be at least the same of the input
neurons in order to avoid underfitting error, which is a poor adjustment of
the model. But it also must support the information given from the training
dataset, avoid overfitting error that counts the residual variation. Thus, the
number of the hidden neurons (Na where a is the correspondent hidden layer)

is set for each problem.

3.3.3.3
ANN Types

The ANN can have different interconnections called ANN Types. The
networks that process the information beyond a non-recurring basis are called
Feedforward (FF). In another words, the first layer has the input data, which
are the input neurons; the last layer gives the output data, and all hidden

layers are fully connected. The FF is illustrated on Figure 3.9. [43]

Hidden layer 1 Hidden layer 2 Output layer

Figure 3.9: ANN FF with two hidden layers.
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The mathematical equation of the FF architecture with one hidden layer,

one output y and n input neurons x is shown on Equation 3-8:

J n
y"'F = Fy(by + > (wye F1(b1; + > x.wly,))) (3-8)
k=1 i=1
Where Fy is the output function; F1 the transfer function; w1 the weight

from the input neuron n to the hidden neuron k; wy the weight from the hidden

neuron k to the output neuron; by the bias of the output neuron and b1l the
bias of the hidden neuron k. [44]

Cascade-forward network (CF) is quite similar to FF, but it is a recurrent
network, that is, it also includes a connection for all forward layers from
previous layers, thus it explores more the sensibility of multilayers variables
than FF. The CF is illustrated on Figure 3.10, where the input layer not
only gives the information to the first hidden layer but also to all next layers,
including the other hidden layer and the output layer. Each connection creates

a weight in the layer. [43]

Hidden layer 1 Hidden layer 2 Output layer

Figure 3.10: ANN CF with two hidden layers.

The mathematical equation of the architecture CF with one hidden layer,
one output y and n input neurons x shown on Equation 3-9 has a different
term added to the FF equation (Equation 3-10).

Yo = (Zn: FO.w0;.z;) + Fy(by + Zj:(wyk.Fl(blk + Zn:aczwlm))) (3-9)

i=1 k=1 i=1

yr =3 FO.w0;.a; + y*F (3-10)
i=1
Where FO is the transfer function from the input layer to the output and

wO the feedback weight from the input neuron i to the output. [44]

The Elman network (ELM) is a dynamic and layer-recurrent network. It
has also been explored for small nuances identification, because is a completely

recurrent network. The ELM is illustrated on Figure 3.11, where each infor-

OUTPUT
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mation ¥y is feedback to the previous layers. Thus, the first hidden layer not
only receives a weight from itself §, but also another from the second hidden
layer. [43]

Hidden layer 1 Hidden layer 2 Output layer

OUTPUT

Figure 3.11: ANN ELM with two hidden layers.

The mathematical equation of the architecture ELM with one hidden
layer, one output y and n input neurons x shown on Equation 3-11 demon-

strates the aggregate complexity: a new term in the innermost sum.

J n
yPHM = Fy(by + > (wyr. F1(01x + > 2. (wly; + way,)))) (3-11)
k=1 i=1

Where wa is the feedback weight from the hidden neuron k to the input

layer.

3.3.34
Backpropagation algorithm

The backpropagation algorithm is usually used for computing the loss
function gradient in order to support a random learning process. It is based on
the error minimization from the comparison of the squared difference between
the predicted and observed variables from the network (y on Equation 3-12).
(39, 40, 42, 43]

( observed __ @predicted)z

Ejlw] = = 5 (3-12)

Where E[W] is the error of a neuron j with a set of weights w.

The neurons are updated proportionally from the gradient of the error
E;lw], due to the learning rate n (Equation 3-13).
OF[w]

8wij
Where the learning rate 7 is a constant between 0 and 1, i is the

connection from the previous layer for the neuron j from the next layer.
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As other gradient descent methods, it needs to calculate the derivative
for all network layers. Then, the adjustment of weights can be rewritten as
Equation 3-14. [13, 40]

Awfjl =ns; B + a.wfj (3-14)

Where Awf;fl and wj; are the weight variation of neuron j to connection i
at time t4+1 and t respectively, s; is the input value of neuron j from connection

i and « the momentum term.

The n and « are terms that have been explored for implementation. The
learning rate influences on the convergence adjustment, because it directly
changes the derivative of the minimization function. It varies between 0 and 1,
and it should be as high as possible, preventing trapping on the local minimum,
1 near 0. But not too high, avoiding an oscillation around the global minimum,
1 near 1. The momentum term keeps previous information on the weights,

which supports the non-oscillation on the global minimum. [13, 40]

3.3.3.5
Transfer functions

The transfer functions (Fa, where a is the correspondent hidden layer)
process the information given to a neuron from the weights and bias received.
The function from the output layer is also called activation function (Fy). They
can be differential equations for continuous systems or difference equations for
discreet systems. [13]

The usual transfer functions used are listed on Table 3.1. There can also

have a combination between them in each range of the domain.
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Table 3.1: Transfer functions and its derivatives.

Name Plot Equation Derivative
Linear -l flx)=azx+b fl(x)=a
........................ R~
Unit Step - f(z) = 0 forz<O0 o) = 0 forz#0
1 forz>0 d(z) forx=0
Logistic f@) = 0= f'(@) = f(z)(1 = f(z))
Tangent fz) = H%Q, 1 fl(z) =1— f(x)?
Arcotan f) = (2= -1 fx) = =5
SoftPlus f(z) =1n(1+e%) (@) = 4=
Gaussian f(z)=e" fl(x) = —2ze™®
) 1 forx =0 , 0 forx =0
Sinc f(Tf) = sin(x) f (Z’) = cos(x) sin(x)
= for x #0 == for x #0
3.34

ANN in photocatalysis

Some recent studies employed ANN in hydrogen production processes
[12], whether monitoring parameters or estimating production rate. The goals
in catalysis were prediction, classification and recognition [45] for theoretical
or experimental studies. The reported results have successfully implemented
the neural models [7, 8, 9, 10, 11].

Ghanbary et al. [8] applied ANN FF for photocatalytic prediction. They
compared TiO, samples performance with different crystallite system as phases
amount and crystallite size. They also encouraged the use of ANN for up-
scaling simulation . They used the same photocatalyst of the present work.
Another approach in common is the ANN modelling and no requirement of
phenomena mechanisms. However, the use of neural models in the present

study is distinct.
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Verma et al. [46] applied ANN FF for degradation of Metronidazole
(MTZ), widely used as antibiotic and seem as a pollutant in nature. The
reaction of degradation uses TiO, photocatalyst. The input parameters were
process variables: treatment time of MTZ, intensity of the UV light, the
percentage surface area covered by the catalyst, Area/Volume ratio of the
batch reactor, pH and the oxidant HyOy dose. The output was the percentage
of degradation. The regression coefficient suggested a well adjustment of the
network, with R?, . = 0.9942. The best network had one hidden layer with
only four neurons.

Karimi-Jashni et al. [47] applied multilayer ANN FF for prediction
of Chemical Oxygen Demand (COD) photocatalytic degradation, that is
used as a variable for landfill leachate. They used tungsten doped TiOq
nano-photocatalyst for the reaction performance. The input parameters were:
percentage of tungsten content, calcination temperature, pH, and exposure
time with the photocatalyst. The best network showed a good gorrelation
with R? . = 0.99 and R%,, = 0.98. They investigated the variables’ relative
importance and they also used genetic algorithm to determine the optimal
degradation condition.

Yildirim et al. [48] applied ANN to establish a relationship between
structural properties of CO and Oy adsorption over gold photocatalyst. The
input were the size, charge, unpaired electron, and coordination number of
the gold atom bounded for each gas. Each output parameter was individually
analysed: the band gap, the binding energy, the ionization potential and the
electron affinity. The dataset was obtaneid from Density Functional Theory
(DFT) simulation. They had a good implementation and prediction for all their
data. They also suggested an improvement in the studied catalytic systems.

Bounding TiOs variables in ANN modelling for photocatalysis is a
complex task due to its diversity. Collecting a database for them, it is even

harder.
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Methodology

The flowchart had four main steps (Figure 4.1) and, as a consequence

of the ANN decisions, two Blocks (A and B). All steps related the database
to the modelling. The ANN was implemented in the Matlab R2018b software

and Deep Learning Toolbox (further information on Appendix).

acquisition |

Data T
andlysis | Groups arrangement |
| Yes
ANN | Number of hidden layers |
development
All ANN setting More hidden
| ANN Type possibilities? layers?
ANN
setting | ANN Topology | No
| Training algorithm | Review data? Xes
prediction
| ANN Training | No
t - Yes
| ANN Test ANN evaluation More data?
Good No
prediction

Data | Database collection [

v
Parameters selection |

1 l

| Dataset section [

Stop )

Figure 4.1: Methodology flowchart for the database construction and ANN
development.

4.1

Data acquisition

First of all, articles, books and reviews were checked on the following

search engines:

1. Portal de Periédicos CAPES - http://www-periodicos-capes-gov-

br.ez370.periodicos.capes.gov.br/
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2. Google Scholar - https://scholar.google.com/
3. Web of Science - https://apps.webofknowledge.com/
4. Scopus - https://www.scopus.com/

Where the keywords terms used were either one or a combination of:
“modelling”; “photocatalyst”, “characterization”, “XRD”, “DRS”, “physisorp-
tion”, “BET”, “pore”, “specific surface”, “band gap”, “TiO2”, “photocataly-
sis”, “anatase”, “rutile”, “anatase phase”, “titania”, “artificial neural network”,
“ANN7” “crystal size”, “crystallite size”, “hydrogen production”, “titanium
dioxide”; “synthesis”.

Were considered only titanium dioxide photocatalyst, and no titanium-
based or doped. In total, 53 different articles were used in the database.

After the Literature collection, the parameters with higher frequency
report were selected from XRD, Nitrogen Physisorption and DRS techniques.

The parameters used in this study were:
1. % A the percentage of anatase phase
2. % R the percentage of rutile phase
3. % B the percentage of brookite phase
4. dA [nm]| the mean crystallite size of anatase phase
5. dR [nm] the mean crystallite size of rutile phase
6. dB [nm] the mean crystallite size of brookite phase
7. S [m?z] the specific surface area

8. dP [nm] the pore diameter

9. Vol [“’;3] the pore volume

10. CP the band gap correspondent phase
11. TT the transition type of band gap
12. Eg [eV] the band gap value

The variables CP and TT are values applied in this present work
to support ANN recognition. Whenever the Correspondent Phase was not
addressed by the source article or the analysed system presented a single phase,
the value zero (0) was attributed to CP. The anatase phase was associated
with number one (1); rutile, two (2) and brookite, three (3). For TT, the
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direct allowed transition was assigned to 1; indirect allowed transition to 2;

and forbidden transition or unknown, number zero. (Table 4.1)

Table 4.1: List of variables CP and TT for ANN modelling.

Phase CP Transition TT
Anatase 1 | indirect allowed 2
Rutile 2 direct allowed 1
Brookite 3 =
Unknown 0 other 0

4.2
Data analysis

Then, all data were put in the same file in order to analyse them. The
output parameter was only Eg, as an indirect photocatalytic evaluation pa-
rameter. Two Blocks A and B were defined, they had different input parameters
where each group was divided into four and ten groups, respectively, in order
to investigate the variables relationships. This strategy is usually used for the
evaluation of the variables influence. [41]

The input parameters were %A, dA, S, dP and Vol. After the first
attempts of ANN modelling, the mean pore diameter was not influencing
the results. Making no difference, this parameter was totally discarded. Thus,
Block A was divided into groups, investigating in pairs and with all parameters,

as shown on Table 4.2.

Table 4.2: Parameters of Block A.

Input Output | Total of
Group
%A dA S Vol Eg Vectors
I X X = = X 249
IT X - X — X 206
111 X - - X 124
v X X X X X 110

nn

Where the cells assigned with "x" were considered and with dash were

not.

Then, the full relation of crystalline phases was further investigated. An-
other gap in literature reports was faced: the Eg measurement and their corre-

spondent relationship from the crystalline structure. Therefore, the variables


DBD
PUC-Rio - Certificação Digital Nº 1812690/CA


PUC-Rio- CertificagaoDigital N° 1812690/CA

Methodology 39

CP and TT were incorporated as input parameters as well as variables %A,
%R, %B, dA,dR, dB. The Block B were divided into ten groups (Table 4.3).

Table 4.3: Parameters of Block B.

Group Input ‘ Output | Total of
%A %R %B dA dR dB CP TT Eg Vectors

I & SI X X X X X X 173 & 149
IT & SII X - X X X X 183 & 163
IIT & SIIT | x — X X X 220 & 191
IV &SIV | x — - X - — X - X 220 & 196
V & SV X — - X - - - X X 220 & 196

Again, the cells assigned with "x" were considered and with dash were
not. The crystallite size calculation from data including Rietveld Refinement
were groups I to V. The ones that applied single peak Scherrer Equation were
groups Sl to SV.

The total of vectors varied according to experimental data found in the
literature with all required variables for each group. The dataset was carefully
divided - point by point - into the training data (80 %), looking out for the
extremities, and the test data (20 %), ideally with no new combinations. As a

consequence, the Blocks’ results have had different valuation.

4.3
Training algorithms and transfer functions

The Backpropagation algorithm has been upgraded in order to be faster
and have a better performance. For this, the implementation usually join n
(learning rate) and « (momentum), considering the derivative from perfor-
mance and the gradient minimization [39, 40]. It is the Gradient descent
backpropagation (traingdx) Equation 4-1. This work used the Levenberg-
Marquardt backpropagation (trainlm), the Levenberg-Marquardt backprop-
agation with Bayesian Regularisation (trainbr) and the One-step secant back-
propagation (trainoss) algorithms. [43]
dX = a.dXprep + n.a.M (4-1)
dX
dX: search direction
dX,rey: Previous search direction

d o
<k derivative from performance.

Trainlm is highly recommended due to its efficiency and quickness

response. It is a second-order optimization that uses an approximation of
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Jacobian matrix for minimization of weights and biases, assuming the errors
values. The approximation matrix is an update from Newton’s method, shown

on Equation 4-2.

H=J"Jap =ap— [J'T+pl] 7 JTe (4-2)
H: Hessian matrix
J: Jacobian matrix
JT: Transpose matrix
I: Identity matrix

e: vetor of network errors

On the other hand, trainbr uses not only the errors values, but also
a linear combination between them and the weights in order to have a faster
optimization than trainlm. The trainoss algorithm uses a secant approximation
instead of linear approximation, requesting less computational storage and

performance to minimize the gradients (Equation 4-3).

dX = —gX + A Xyep + B.dgX; (4-3)
gX: gradient
Xstep: weights change
dgX: gradient change

We used here difference equations: hyperbolic tangent sigmoid (tansig),
logistic sigmoidal (logsig) and linear (purelin) functions. Tansig function
(Equation 4-4 and derivative Equation 4-5) is a non linear transition between
two states -1 and 1. Then, it can assume negative values. On the other
hand, logsig (Equation 4-6 and derivative Equation 4-7) is between 0 and 1
values, assuming only positive results. The purelin (Equation 4-8 and derivative

Equation 4-9 ) is a linear transition, so the information is constant.

f@) = e (-0
df(x) = 4e™™*
der 14 e 2 (4-5)
f0) = 17— (46
df (z) _ e (A7)

dx (1+e7)2
f@) =2 (48)
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—1 (4-9)

4.4
ANN development

All data were normalized, the gradient optimization was the SSE function
for 107, the convergence was also 1074, and the steps were 1000 epochs
for block A and 3000 for B (Figure 8.13 on Chapter Appendix). The ANN
parameters used for each Block were the type, algorithm, functions, and layers.
They are listed in Table 4.4.

Table 4.4: List of ANN parameters for each block.

Parameters Block A Block B
ANN type (Type) FF FF, CF, ELM
Training algorithm (Alg.) trainlm, trainbr, | trainlm, trainbr,
trainoss, traincgb trainoss
Hidden layer function (Fx) tansig, logsig tansig, logsig
Number of hidden layers (x) 1 1,2,3
Transfer function (Fy) purelin, tansig purelin, tansig

For the first attempts, the ANN type was only FF. Then, for the Block
B, we also included CF and ELM networks in order to improve the learning
process. The ANN topology includes the transfer functions used and the hidden
neurons selection. The transfer functions employed were tansig, logsig and
purelin functions. The logsig was only applied for hidden layers and purelin
for output layers.

Considering the peculiarity of each Block and Group, the number of
inputs, outputs and hidden neurons were set to avoid calculation issues, where

the maximum was set according to Equation 4-10.

¢»1 = NO+ NO.N1+ N1+ N1.Ny+ Ny
¢ =NO+ NO.N1+ N1+ N1.N2+ N2+ N2.Ny+ Ny (4-10)
¢3 = N0+ NO.N1+ N1+ N1.N2+4+ N2+ N2.N3+ N3.Ny+ Ny

Where ¢, is used for one hidden layer, ¢o two and ¢3 three. NO is the
number of input neurons, N1 is the number of hidden neurons on the first
hidden layer, N2 on the second hidden layer, N3 on the third hidden layer and
Ny the output. Thus, ¢ must be less than the number of the training dataset.
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The combinations of number of neurons are shown on Table 4.5 for one

hidden layer evaluation and on Table 4.6 for two and three hidden layers.

Table 4.5: Number of hidden neurons tested set for one hidden layer.

Group | Input Hidden neurons (N1) Output
I 2 even{2 - 20} 1
IT 2 even{2 - 20} 1
Block A
IT1 2 even{2 - 20} 1
IV 4 even{4 - 14} 1
I 8 8 - 13] 1
ST 8 8- 11] 1
11 6 [6 - 18] 1
SII 6 6 - 16] 1
III 4 even{4 - 28} 1
Block B
SII 4 even{4 - 24} 1
IV 3 0dd{3 - 35} 1
SIV 3 odd{3 - 31} 1
\% 3 odd{3 - 35} 1
SV 3 odd{3 - 31} 1

Table 4.6: Hidden neurons tested set for more hidden layers on Block B.

Input Hidden neurons Output
neurons | First layer Second layer Third layer | neurons
(N1) (N2) (N3)

{4, 6, 8} even{4 - 22} — 1
{4, 6} {4, 6} even{4 - 16} 1

4.5
ANN evaluation

For ANN evaluation, all models were compared by results of Sum Squared
Error performance function (SSE, equation 4-11) for the training step; values
of coefficient of determination (R? Equation 4-14) for both training and test;
the linear line regression of observed and predicted values.

SSE = Z(yqbserved . :gpredict)Q (4_11)

% %
=1

1

SST = Z(yqbserved o g)Q (4_12)
1=1
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SSR = Z(gfredict _ y)z (4_13)
i=1
SSE n observed __ APT‘@diCt 9
R2 =] —-—— =1-= z:lﬁyz - dyz _ ) (4_14)
SST Ei:l(%'o served __ y)2
Where y25¢v¢d is the observed output value of data i, ered’d the

predicted output value by the network, 7 the mean of n observed output

values, SST is the total sum of squares, and SSR the residual sum of squares.
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Results and discussion

5.1
Dataset results

To study the relation between TiO, properties and its photocatalytic
performance, we adopted ANN modelling. Then, our first strategy choice
was to investigate experimental literature reports instead of performing a
laboratory investigation.

In the beginning of this study, we tried to implement together some
processes results for the photocatalytic performance as hydrogen production
rate. During the data collection in literature, we faced a philosophical issue that
questioned how far could the literature reports be compared using a statistical
tool. For instance the use of TiO, as photocatalyst in water splitting, each
laboratory has its own reactor, its own light source, its own chemical solution.
In Table 5.1, the reports of distinct research groups are represented with one

photocatalyst each.

Table 5.1: Collection of processes data for hydrogen production from phota-
catalytic water splitting.

Photocatalyst | Morphology Light Source Light Solution H, production Ref
Spectrum rate ymol/h
SG400 spherical Fluorescent 15w  300-400 [nm] 75 water 3.37 [26]
25 methanol
2.0TiCly/ square Sun 2000 1 sun electrolysis 0.9 V 4.78 [49]
0.78Ti(OBu)4 bipyramid Solar Simulator AM 1.5 Ag/AgCl
#1 square Xenon 300W = methanol 153 [50]
bipyramid 10% v/v
A400 nanofiber Xenon 350W 365 [nm] 80 water 37 [25]
20 methanol

Futhermore, each report has it own view of photocatalysis. For example,
Masolo et al. [49] declares using "photoelectrolysis experiments" on "photocat-
alytic performances" with "Hy evolution from the water splitting reaction", but
some authors could not consider it as photocatalysis process.

Measurements of TiO, from characterization techniques seemed more
consolidated and consonant. That is why we decided to investigate the perfor-

mance through the band gap value, being designated as the output parameter.
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Block A results
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The first, in fact, data acquisition collected 52 photocatalyst reports
(Tables 5.2 and 5.3).

Table 5.2: The smallest dataset of Block A.

Photocatalyst %A dA S dP Vol Eg Ref
1 SG400 | 100 13.0 61 35 0344 322 [26]
2 SG500 | 100 19.0 37 35 0209 323 [26]
3 SG600 100 33.0 24 3.5  0.185 3.22 [26]
4 SG650 96 380 24 W 0149 320 [26]
5 SG700 88 450 20 | = 0.125 3.16 [26]
6 SG750 62 540 17 | = | 0071 3.10 [26]
7 SG800 6 660 6 ~0 0024 299 [26]
8 SG900 0 0.0 1 ~ 0 0 2.98 [26]
9 HT 100 6.0 224 4.0 0206 3.11 [26]
10 HB 100 9.0 202 33 0.343 3.26 [26]
11 ML 100 21.0 76 74 0307 3.27 [26]
12 KR 100 7 259 3.3 0392 3.24 [26]
13 DP 82 230 49 25 0.176 3.18 [26]
14 KM 0 0.0 10 ~0 0.034 3.00 [26]
15 hollow s. 6 100 40.0 75 91.0 0.22 2.60 [51]
102.3
16 core-shell s. 4 | 100 40.0 39 = 0.15 2.60 [51]
17 TiO2-A 114 203 45 119 0.133 3.04 [52]
18 TiO2-B 84 26.7 41 156 0.163 3.04 [52]
19 TiO2-C 0 0.0 42 16.0 0.170 3.00 [52]
20 TiO2-D 0 0.0 47 176 0.208 3.00 [52]
21 TiO2E 0 00 63 175 0233 3.00 [52]
22 TiO2-F 54.5 9.8 127 9.6 0.256 3.10 [52]
23 TiO2-G 723 85 133 104 0.294 3.10 [52]
24 Optimum | 95 150 100 87 0217 3.28 [53]
25 pH3 63 89 183 6.8 0314 3.06 [54]
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Table 5.3: The smallest dataset of Block A (continued of Table 5.2).

Photocatalyst %A dA S dP Vol Eg Ref
26 pH9 100 13.3 127 9.0 0.288 3.02 [54]
97 pHI1 | 100 203 81 145 0.293 3.00 [54]
28 HTMT-300 | 100 7.3 295 6.9 0450 3.16 [55]
29 HTMT-500 | 100 11.8 209 7.9 0.410 3.14 [55]
30 HTMT-700 | 100 22.3 87 10.1 0.280 3.08 [55]
31 TiO2 NTs | 100 9.8 204 7.4 0.345 3.08 [56]
32  PTF-700 68 3.3 15 242 0.070 2.81 [57]
33 P25 83 350.0 39 20.0 0.470 295 [49]
40.0
34 1.0 TiCl4 87 220.0 196 7.1 0.630 3.02 [49]
9.3
35 HM-R2 0 0.0 173 13.0 0.022 3.00 [31]
21.0
7.0
36  HM-R2C 0 0.0 112 10.0 0.007 3.00 [31]
26.0
6.0
37  HM-R48 0 0.0 117 8.0 0.017 3.00 [31]
22.0
6.0
38 HM-R48C 0 0.0 92 8.0 0.009 3.00 [31]
25.0
6.0
39 FSP TiO2 81 28.0 109 15.0 0.180 3.17 [58]
40 A400 100 9.0 31 3.1 0.020 3.20 [25]
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Table 5.4: The smallest dataset of Block A (continued of Table 5.2).

Photocatalyst %A dA S dP Vol Eg Ref

41 SC500 72 140 69 7.2 0.130 3.13 [25
42 RC500 5> 13.0 57 7.6 0.110 3.05 [25
43 R800 0 00 5 56 0.010 3.00 [25

]
]
]
44  GIHT2 | 821 52 247 42 0.160 3.20 [59]
45 GIHT4 | 814 59 240 44 0.330 3.30 [59]
46  GIHT6 |82.11 6.4 203 5.0 0.330 3.27 [59]
47 GIHTS |90.79 6.5 211 56 0.390 3.28 [59
48 GIHTIO |93.19 6.7 190 6.1 0.390 3.38 [59]
49 GIHTI2 | 9521 69 198 5.6 0.370 3.40 [59]
50 SG750 (2) | 73 455 15 [ =1 0.102 3.10 [60]
51 Ti02-2 | 100 10.1 219 3.4 0.187 3.22 [61]
52 Ti02-3 | 100 13.8 188 4.9 0.231 3.24 [61]

The dataset was divided into training (44 vectors) and test (8 vectors).
The training was carried out to have the set’s maximum and minimum
values, not only for the band gap but also for the other variables, being as
representative as possible. Then, ANN models were developed. As previous
mentioned, dP was not used for the ANN results because it had no difference
on ANN results. Maybe because there were few data.

So, we used only FF network with 4 input neurons, where we first changed
the number of hidden neurons, the transfer function and the training algorithm.
We did not explored all combinations and did not get the SSE.

All topologies had a good adjustment of R?, expect the FF 4-7-1:
trainlm, logsig, purelin due to its RZ, = 0.40 and the FF 4-7-1: trainbr,
tansig, purelin with R? . = 0.28 and R2_ 0.34. The results are shown

train

in Table 5.5). The model FF 4-7-1: trainlm, tansig, purelin had RZ , =

train

0.9982 (almost 1.00) and RZ_, = 0.9093 (almost 0.91), suggesting an overfitting

due to the R? be almost one.
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Table 5.5: ANN results of Block A with the smallest database.

Alg. F1 N1 Fy Riuin  Riw

purelin  0.9204 0.7196
purelin  0.9736 0.7334
purelin  0.9650 0.8108
purelin =~ 0.9982 0.9093
purelin  0.9371  0.7450
purelin  0.9432  0.7969
purelin  0.9827  0.8650
purelin  0.9745 0.3975
purelin  0.2810 0.3391
purelin  0.9135 0.6820

purelin  0.9308 0.8130

trainlm  tansig
trainlm  tansig
trainlm  tansig
trainlm  tansig
trainlm  logsig
trainlm  logsig
trainlm  logsig
trainlm  logsig
trainbr  tansig

trainoss tansig

ENTEEN PN RS B RSB SN B NS, BTN

traincgb tansig

All training dataset was well adjusted, but the test no. Analysing the
responses data of band gap predicted from the model and the observed
(Figure 5.1), it supports the training overfitting because all data seems only
connected. Besides that, the model could not get the response behaviour,
because the test range is not the same as the training and neural model can

not extrapolate.

-
[S)

- Band gap observed
Band gap predicted

-

Band gap [eV]

36

34

32 ﬁ/
o Band gap observed | . ‘

— Band gap predicted

L L & L " 28 . .
0 5 10 15 20 25 30 35 40 45 1 2 3 4 5 6 7

Training Dataset Test Dataset

5.1(a): Training 5.1(b): Test

Figure 5.1: The dataset prediction of the result with the highest coefficients of
Block A with the smallest database.

The regression line between the values predicted and observed showed
a good agreement for the training recognition, being precise and accurate.
However, for the test, the responses were really sparse. Due to the few test

dataset, the fitting might have seemed well adjusted.
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Figure 5.2: The ANN evaluation of the result with the highest coefficients of
Block A with the smallest database.

In order to develop a model as diverse and representative as possible, we
collected more data from literature and decided to investigate further so that
each input pair would have been compared. That is, a new data acquisition.

We collected more 205 photocatalyst reports, totalling in 257 (Tables 5.6
to 5.13). The variables were the same as before. But the data were reanalysed
and we discarded data points we considered flawed, as the 8 photocatalyst
SG900 of a previous Block dataset, where its S value was 1 m?/g.

We can also notice that a lot of papers reported the use of titania P25 as a
blanck point for comparison. It may happen due to attempt a standardization

of photocatalysis.
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Table 5.6: Dataset I of Block A.

Photocatalyst %A dA S Vol Eg Ref
1 SG400 | 100 13.0 61 0.344 3.22 [26]
2 SG500 100 19.0 37 0.209 3.23 [26]
3 SG600 | 100 33.0 24 0.185 3.22 [26]
4 SG650 96 38.0 24 0.149 3.20 [26]
) SGT700 88 45.0 20 0.125 3.16 [26]
6  SG750 | 62 540 17 0.071 3.10 [26]
7 SG800 6 660 6 0024 299 [26]
8 HT 100 6.0 224 0.206 3.11 [26]
9 HB 100 9.0 202 0.343 3.26 [26]
10 ML 100 21.0 76 0.307 3.27 [26]
11 KR 100 7.0 259 0.392 3.24 [26]
12 DP 82 230 49 0176 3.18 [26]
13 KM 0 00 10 0034 3.00 [26]
14 TiO2-A 11 203 45 0.133 3.04 [52]
15  TiO2-B 26.7 41 0.163 3.04 [52]
16 TiO2-C 0.0 42 0170 3.00 [52]
17 TiO2-D 0.0 47 0.208 3.00 [52]
18 TiO2-E 0.0 63 0.233 3.00 [52]
19 TiO2-F 5%5) 9.8 127 0.256 3.10 [52]
20 TiO2-G | 72 85 133 0204 3.10 [52]
21 Optimum 95 15.0 100 0.217 3.28 [53]
22 pH3 63 89 183 0.314 3.06 [54]
23 pH9 100 13.3 127 0.288 3.02 [54]
94 pHI1 | 100 20.3 81 0.293 3.00 [54]
25 HTMT-300 | 100 7.3 295 0.450 3.16 [55]
26 HTMT-500 | 100 11.8 209 0.410 3.14 [55]
27 HTMT-700 | 100 22.3 87 0.280 3.08 [55]
28 TiO2 NTs | 100 9.8 204 0.345 3.08 [56]
29  PTF-700 68 31.3 15 0.070 2.81 [57]
30 P25 83 35.0 39 0470 2.95 [49]
31 20TiCl4 | 74 225 73 I 307 [49]
32 1.0 TiCl4 87 22.0 196 0.630 3.02 [49]
33 0.5TiCl4 | 92 21.0 92 [N 318 [49]
34 #1 4 280 24 | = 3.00 [50]
35 H#7 95 34.0 25 = 3.20 [50]

20
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Table 5.7: Dataset 1I of Block A (continued of Table 5.6).

Photocatalyst %A dA S Vol Eg Ref
36 HM-R2 0 0.0 173 0.022 3.00 [31]
37 HM-R2C 0 0.0 112 0.007 3.00 [31]
38 HM-R48 0 0.0 117 0.017 3.00 [31]
30 HM-R4SC | 0 0.0 92 0009 3.00 [31]
40 FSP 81 28.0 109 0.180 3.17 [58]
41 A400 100 9.0 31 0020 3.20 [25]
42 SC500 72 140 69 0.130 3.13 [25]
43 RC500 55 13.0 57 0.110 3.05 [25]
44 R800 0 0.0 5 0.010 3.00 [25]
45 G1HT4 81 59 240 0.330 3.30 [59]
46 G2HT4 80 6.2 158 0.300 3.23 [59]
47 G3HT4 79 6.2 161 0.270 3.28 [59]
48 GIM 100 17.6 52 0.130 3.27 [59]
49 G2M 100 12.8 90 0.130 3.25 [59]
50 G3M 83 109 75 0.140 3.24 [59]
51 GIHT?2 82 52 247 0.160 3.29 [59]
52 G1HT4 81 59 240 0.330 3.30 [59]
53 G1HT6 82 6.4 203 0.330 3.27 [59]
54 G1HTS 91 6.5 211 0.390 3.28 [59]
55 G1HT10 93 6.7 190 0.390 3.38 [59]
56 G1HT12 95 6.9 198 0.370 3.40 [59]
57 Degussa P-25 | 80 22.0 52 3.20 [62]
58 Hombikat 100 7.0 280 3.22  [62]
59 SG-773 | 100 217 38 319 [62]
60 SG-873 100 36.9 28 3.19 [62]
61 SG-923 | 96 380 24 319 [62]
62  SG-973 | 97 500 24 317 [62]
63 SG-1023 92 57.0 18 297 [62]
64 SG-HT-423 | 100 6.5 182 3.26 [62]
65 SG-HT-773 100 11.9 88 3.25 [62]
66 SG-HT-873 | 100 262 38 3.25 [62]
67 SG-HT-923 | 100 40.7 21 3.24  [62]
68 SG-HT-973 96 56.1 12 3.13  [62]
69 SG-HT-1023 | 45 651 7 314 [62]
70 SG750 (2) 73 455 15 0.102 3.10 [60]

o1
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Table 5.8: Dataset III of Block A (continued of Table 5.6).

Photocatalyst %A dA S Vol Eg Ref
71 TiO2-2 100 10.1 219 0.187 3.22 [61]
72 TiO2-3 100 13.8 188 0.231 3.24 [61]
73 TiO2-ST 97 28.0 35 0.160 3.19 [63]
74 TiO2-US 100 19.0 121 0.290 3.19 [63]
75 Crystal 100 181 5  340  [64]
76 MT - 600 100 21.8 54 0.230 3.10 [65]
7 Meso Titania 100 13.6 50 0.119 3.24 [66]
78 Commercial Titania | 100 [F5H 40 S 3.01 [66]
79 Reference 100 17.0 13 0.076 3.18 [67]
80 TS 100 11.0 139 3.57 [68]
81 TiO2 300 100 7.8 163 . 3.20 [69]
82 TNP - rotavapor 80 151 0.200 3.17 [70]
83 TNP- filtred 71 130 0.200 3.17 [70]
84 TNP - oven 69 121 0.200 3.17 [70]
85 TSC - glycine 400 5D 85 3.08 [70]
86  TSC - glycine 500 60 90 3.08 [70]
87 TSC - urea 1:3 61 108 3.00 [70]
88  TSC-ureal:l | 58 65 3.00 [70]
89 TiO2 - P25 70 53 0.000 3.26 [70]
90 TiO2 - 500 undoped | 100 49 0.108 3.14 [71]
91 TiO2 (PSG) 56 14.0 25 0.056 3.21 [72]
92 TiO2 (SCS) 100 105 177 0.170 3.26 [72]
93 TiO2 (MW) 100 6.0 251 0.558 3.64 [72]
94 TiO2 (PSG) 5 14.0 25 0.056 3.26 [72]
95 TiO2 (SCS) 100 10.5 177 0.170 3.42 [72]
96 TiO2 (MW) 100 6.0 251 0.558 3.50 [72]
97 TiO2 (PSG) 56 14.0 25 0.056 3.14 [72]
98 TiO2 (SCS) 100 10.5 177 0.170 3.43 [72]
99 TiO2 (MW) 100 6.0 251 0.558 3.48 [72]
100 T700 81 284 10 0.061 3.01 [73]
101 TAT00 100 23.6 11 0.088 3.16 [73]
102 TT700 96 284 39 0.340 3.10 [73]
103 TC700 44 21.8 18 0.110 2.96 [73]
104 NI 100 140 92 0460 295 [74]
105 NI450 100 16.0 79 0.420 3.00 [74]

02
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Table 5.9: Dataset IV of Block A (continued of Table 5.6).

Photocatalyst %A dA S Vol Eg Ref
106 NI500 100 17.0 77 0.380 2.99 [74]
107 NI550 100 18.0 68 0.460 2.99 [74]
108 undoped TiO2 8 3.9 5 0.007 3.17 [75]
109 dil. HCL #1 0 00 24 2.95 [76]
110 conc. HOL #1 0 00 29 2.98 [76]
111 conc. HCL #2 0 00 2.95 [76]
112 conc. HCL #3 0 00 3.02 [76]
113 dil. HOL #2 0 00 82 3.25 [76]
114 dil. HCL #3 0 00 69 3.28 [76]
115 dil. HCL #4 0 0.0 46 3.29 [76]
116 dil. HCL #5 0 0.0 18 3.24 [76]
117 dil. HOL #6 0 00 12 2.95 [76]
118 dil. HCL #7 0 0.0 141 3.15  [76]
119 dil. HCL #7 0 00 141 3.00 [76]
120 dil. HOL #8 0 00 35 3.16 [76]
121 dil. HCL #8 0 00 35 2.96 [76]
122 NaCl #1 71 22 189 3.00 [76]
123 NaCl #2 30 27 138 3.02  [76]
124 P25 80 251 50 3.02  [76]
125 TiO2 100 6.0 95 3.18 [77]
126 pure 0BDT 70 310 44 3.07 [78]
127 pure 0BDT 70 310 44 2.75 [78]
128 T-160 65 163 0.140 3.17 [79]
129 T-180 99 164 0.180 3.18 [79]
130 T-200 47 145 0.180 3.15 [79]
131 TiO2 P25 TM 70 156 50 [0S 322 [80]
132 Ti0O2-Brijh6 50 100 0.350 3.02 [27]
133 TiO2-PEG ) 190 0.640 2.94 [27]
134 TiO2-PVA 30 150 0.280 2.97 [27]
135 TiO2-CTAB 40 110 70 0.180 299 [27]
136 P25 80 32.0 50 0.000 3.23 [27]
137 nanosized combustion TiO2 | 100 10.0 156 2.18 [81]
138 mnanosized combustion TiO3 | 100 10.0 156 2.65 [81]
139 Methanol (nano 01) 69 17.0 69 3.19 [82]
140 Isopropyl alcohol (nano 02) | 74 12.6 84 3.21 [82]
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Table 5.10: Dataset V of Block A (continued of Table 5.6).

Photocatalyst %A dA S Vol Eg Ref
141 Glacial acetic acid (nano 03) | 82 83 107 [82]
142 Water150 73 120 86 82]
143 Water250 78 106 94 82]
144 Water350 83 81 110 [82]
145 Waterd50 74 86 91 82]
146 T50 79 102 87 8]
147 T60 7% 96 98 [82]
148 T70 83 84 105 82]
149 TS0 76 113 97 82]
150 6h 77 106 95 [82]
151 12h 82 83 108 [82]
152 24h 73102 93 82]
153 calcined 400 89 6.2 125 [82]
154 calcined 500 82 82 106 [82]
155 calcined 600 74 143 86 [82]
156 calcined 800 0 00 36 : [82]
157 TiO2 - 100% 100 (050 25 0110 3.24 [83]
158 TiEt-450 100 151 43 0650 3.22 [34]
159 TiEt-450 100 15.1 43 0.650 3.22 [34]
160 TiEt-600 97 39.1 2 0340 3.21 [34]
161 TiMI-450 100 9.6 77 0.200 3.22 [34]
162 TiMI-600 100 13.6 35 0.130 3.21 [34]
163 TiHNO3-450 55  14.6 40 0.120 3.02 [34]
164 TiHNO3-600 9 273 3 0060 297 [34]
165 TiO2 100 26.9 28 0.100 3.23 [84]
166 P25 80 30.0 63 0.060 3.00 [85]
167 TiO2 100 14.0 186]
168 P-25 70 20.0 187]
169 dil. HCI - Rutile 0 0.0 [76]
170 conc. HCI - Rutile 0 00 [76]
171 conc. HCI - Rutile 800 0 00 [76]
172 conc. HCI - Rutile Tioxide 0 0.0 [76]
173 dil. HCI - Brookite 0 00 [76]
174 dil. HCI - Brookite 300 0 0.0 [76]
175 dil. HCI - Brookite 450 0 0.0 [76]
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Table 5.11: Dataset VI of Block A (continued of Table 5.6).

Photocatalyst %A dA S Vol Eg Ref

176 dil. HCI - Brookite 750 | 0 0.0 18 [76]
177 dil. HCI - Rutile 900 0 0.0 12 [76]
178 dil. HCI- B/R -1 0 00 141 [76]
179 dil. HCI - B/R -1 0 00 141 [76]
180 dil. HCL- B/R -2 0 00 35 [76]
181 dil. HCI- B/R -2 0 00 35 [76]
182 NaCl - 1 71 2.2 189 [76]
183 NaCl - 2 30 27 138 [76]
184 P25 80 [76]
185 TiO2 (1:10) 7 8]
186  TiO2 (1:10) dialysed 7 [88]
187 TiO2 (1:50) 9 8]
188 TiO2 (1:50) dialysed | 9 8]
189 TiO2 (HCL, 24) 0 88]
190 TiO2 (HCL, 48) 0 8]
191 P25 72 [88]
192 Merck 74 [88]
193 TiO2 - pH3 79 32]
194 TiO2 - pH5 100 [32]
195 TiO2 - pHT 93 32]
196 TiO2 - pHY 100 32]
197 T60 100 [89]
198 T65 o7 [89]
199 T70 18 [89]
200 T75 0 [89]
201 P25 79 [90]
202 pH5 calcined 300 79 [91]
203 pH5 calcined 400 83 [91]
204 pH5 calcined 600 88 [91]
205 pH5 calcined 700 100 [91]
206 pH5 calcined 800 12 [91]
207 pH6 calcined 300 80 6.0 160 0.240 3.16 [91]
208 pHG6 calcined 400 88 9.0 133 0.230 3.10 [91]
209 pH6 calcined 600 93 12.0 75 0.200 3.05 [91]
210 pHG6 calcined 700 100 26.0 23 0.120 2.97 [91]
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Table 5.12: Dataset VII of Block A (continued of Table 5.6).

Photocatalyst %A dA S Vol Eg Ref
211 pH6 calcined 800 | 6  38.0 8 0.050 2.93 [91]
212 pHT7 calcined 300 | 91 7.0 3.10 [91]
213 pHT7 calcined 400 | 92 8.0 3.06 [91]
214 pH7 calcined 600 | 96  15.0 3.02 [91]
215 pHTY calcined 700 | 100 31.0 3.00 [91]
216 pH7 calcined 800 | 7  39.0 2.90 [91]
217 pHS calcined 300 | 92 7.0 3.05  [91]
218 pHS calcined 400 | 96 9.0 3.03 [91]
219 pHS calcined 600 | 97 13.0 3.01 [91]
220 pHS calcined 700 | 100 27.0 2.98 [91]
221 pHS calcined 800 | 13 38.0 2.89 [91]
222 pHY calcined 300 | 91 9.0 3.04 [91]
223 pHY calcined 400 | 94 9.0 3.03 [91]
224 pHY calcined 600 | 97  14.0 3.01 [91]
225 pH9 calcined 700 | 100 28.0 3.00 [91]
226 pH9 calcined 800 | 38  39.0 2.90 [91]
227 TESI 88 134 3.22  [92]
228 TENI 5 18.3 332 [92]
229 TEPCI 79 152 3.25 [92]
230 TECI 100 15.2 3.26  [92]
231 TEAI T 152 3.21 [92]
232 TESI 88 13.4 2.83 [92]
233 TENI 5 183 3.05 [92]
234 TEPCI 79 152 2.96 [92]
235 TECI 100 15.2 3.26  [92]
236 TEAI 77T 15.2 2.77 192
237 R1 - TiO2 80 0 0.0 3.16 ]93]
238  R2-Ti02450 | 0 0.0 114  [93]
239 Figure 4e 100 149 76 0.290 3.35 [87]
240 Figure 6al-2 100 25.0 85 0.320 3.30 [87]
241 Figure Af 37 162 61 0.160 3.14 [87]
242 Figure 6b 53 19.2 98 0.280 3.22 [87]
243 Figure 5b 22 350 11 0.030 3.12 [87]
244 Figure 5¢ 90 15.1 49 0.130 3.30 [87]
245 Figure 4d 44 233 18 0.090 3.10 [87]

26
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Table 5.13: Dataset VIII of Block A (continued of Table 5.6).

Photocatalyst %A dA S Vol Eg Ref

246 Figure 4c 0 00 16 0050 299 [87]
247 Figure 4g 0 00 59 0.110 3.16 [87]
248 Figure 4h 0 00 39 0.150 3.13 [87]
249 TWPI 100 5.7 341 [94]
250 TWSI 100 17.1 3.33  [94]
251 TWNI 100 15.2 3.32 [94]
252 TWPCI 100 18.3 3.29 [94]
253 TWCI 100 15.2 3.46  [94]
254 TWAI 100 13.0 341 [94]
255 powder A-480 | 100 10.4 3.13  [95]
256 powder A -550 | 100 12.8 3.18  [95]
257 powder A-600 | 100 14.9 3.23  [95]

The data was organized into groups for a better evaluation of input influ-
ences and relationships with the anatase phase in order to TiO, be represented.
As the literature has not always all measurements for the photocatalyst, each

group was analysed with different number of dataset and of hidden neurons.
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5.2.1
Block A - Group |

This set has 249 vectors, two inputs, and one output, getting a matrix
of variables and vectors of 747 contents. The data used from training was in
total 199 photocatalysts (Tables 5.6 to 5.13). We developed 160 topologies for
this group, where on Table 5.14 shows fifteen of them according to the highest

This group was the worst due to the values high SSE, low R? ., and
almost null R7,. The highest RZ_, was only 0.492 from topology FF 2-6-1
trainoss, logsig, purelin with SSE = 5.358 and R? ,, = 0.123.

ANN modelling could not adjust these parameters (% A, dA and Eg),
suggesting they are either connected or it misses a correlation parameter. It
seems to be the last option, due to both be values from the same technique

and same crystalline structure of anatase phase.

Table 5.14: Results of Group I (%A, dA) from Block A with the highest R?. . .

# | Alg. F1 N1 Fy SSE R?_. R,
1 | trainlm tansig 18 tansig = 3.597 0.412 0.005
2 | trainlm logsig 18  tansig = 3.598 0.411 0.024
3 | trainlm tansig 20 purelin @ 3.603 0.411 0.002
4 | trainlm tansig 16 tansig 3.683 0.397 0.087
5 | trainlm tansig 14 purelin 3.736  0.389 0.009
6 | trainlm logsig 16 tansig 3.814 0.376 0.057
7 | trainlm tansig 12 tansig 3.896 0.363 0.021
8 | trainlm tansig 18 purelin 4.027 0.341 0.008
9 | trainlm tansig 16 purelin 4.107 0.328 0.000
10 | trainlm logsig 12 purelin 4.208 0.311 0.066
11 | trainlm logsig 18 purelin 4.264 0.302 0.030
12 | trainlm logsig 20 purelin  4.266 0.302 0.006
13 | trainlm logsig 16 purelin 4.341 0.290 0.014
14 | trainlm logsig 14 purelin 4.363 0.286 0.003
15 | trainlm tansig 10 purelin 4.399 0.280 0.034



DBD
PUC-Rio - Certificação Digital Nº 1812690/CA


PUC-Rio- CertificagaoDigital N° 1812690/CA

Results and discussion 59

5.2.2
Block A - Group Il

This set has 206 vectors, two inputs, and one output, getting a matrix
of variables and vectors of 618 contents. The data used from training was in
total 165 photocatalysts (Tables 5.6 to 5.13). We developed 160 topologies for
this group, where on Table 5.15 shows fifteen of them according to the highest
Riin-

This group had a good adjustment for training, but could not be
validated. The highest R%,, was 0.444 with a huge SSE (129) and poor R? .
(0.093), which topology was FF 2-20-1 trainlm, logisg, tansig.

We can infer that the dataset was diverse, but was not enough to

represent the relationship with the band gap.

Table 5.15: Results of Group IT (%A, S) from Block A with the highest R?

train:
# | Alg. F1 N1 Fy SSE R?_. R,
1 | trainlm logsig 20 purelin 1.335 0.833 0.023
2 | trainlm tansig 20 purelin @ 1.443 0.820 0.022
3 | trainlm logsig 18 purelin = 1.558 0.805 0.004
4 | trainlm tansig 18 tansig 1.560 0.805 0.007
5 | trainlm logsig 16 tansig 1.586 0.802 0.018
6 | trainlm logsig 18 tansig 1.696 0.788 0.013
7 | trainlm logsig 14  tansig 1.874 0.766 0.000
8 | trainlm tansig 18 purelin 1.888 0.764 0.068
9 | trainlm tansig 16 purelin 1.909 0.762 0.014
10 | trainlm tansig 14 purelin  1.963 0.755 0.004
11 | trainlm tansig 16 tansig 1.971 0.754 0.001
12 | trainlm logsig 14 purelin  2.015 0.748 0.008
13 | trainlm logsig 16 purelin 2.031 0.746 0.008
14 | trainlm tansig 14  tansig 2.186 0.727 0.017
15 | trainlm logsig 10 tansig 2.246  0.719 0.068
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5.2.3
Block A - Group Il

This set has 124 vectors, two inputs, and one output, getting a matrix
of variables and vectors of 372 contents. The data used from training was in
total 99 photocatalysts (Tables 5.6 to 5.13). We developed 160 topologies for
this group, where on Table 5.16 shows fifteen of them according to the highest
Ry ain-

This group had a better adjustment than groups I and II. Although the
high R? the models could not be validate as well due to the low RZ_,. The

train’
highest one was 0.593 with SSE = 8.637, R?. . = 0.238 for FF 2-4-1 trainbr,

train

logsig, tansig.

Table 5.16: Results of Group III (%A, Vol) from Block A with the highest
RQ

train*

# | Alg. F1 N1 Fy SSE R?_. R,
1 | trainlm logsig 18 purelin  0.925 0.918 0.199
2 | trainlm tansig 20 purelin 0.964 0.915 0.236
3 | trainlm logsig 20 purelin  1.117 0.901 0.042
4 | trainlm logsig 20 tansig 1.136 0.900 0.135
5 | trainlm logsig 16 purelin 1.164 0.897 0.005
6 | trainlm logsig 14 tansig 1.275 0.888 0.328
7 | trainlm tansig 16 purelin 1.326 0.883 0.099
8 | trainlm tansig 20 tansig 1.436 0.874 0.041
9 | trainlm tansig 14 tansig 1.467 0.870 0.232
10 | trainlm tansig 14 purelin 1.476 0.870 0.030
11 | trainlm logsig 16 tansig 1.481 0.869 0.141
12 | trainlm logsig 14 purelin 1.550 0.863 0.108
13 | trainlm tansig 18 purelin  1.808 0.840 0.038
14 | trainlm tansig 12 purelin  1.908 0.831 0.020
15 | trainlm tansig 16 tansig 1.931 0.830 0.214
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5.2.4
Block A - Group IV

This set has 110 vectors, four inputs, and one output, getting a matrix
of variables and vectors of 550 contents. The data used from training was in
total 88 photocatalysts (Tables 5.6 to 5.13). We developed 96 topologies for
this group, where on Table 5.17 shows fifteen of them according to the highest
R2

train*

Table 5.17: Results of Group IV (%A, dA, S, Vol) from Block A with the
highest R?

train*

# Alg. F1 N1 Fy SSE R?_. R,
1 | trainlm logsig 14 purelin 0.202 0.982 0.005
2 | trainlm tansig 14 tansig = 0.204 0.981 0.026
3 | trainlm tansig 14 purelin  0.204 0.981 0.253
4 | trainlm tansig 12 purelin 0.316 0.971 0.156
5 | trainlm logsig 12 purelin 0.382 0.965 0.018
6 | trainlm tansig 12 tansig 0.458 0.958 0.047
7 | trainlm logsig 12  tansig 0.545 0.950 0.056
8 | trainlm tansig 10 purelin 0.999 0.909 0.113
9 | trainlm logsig 10 purelin 1.025 0.906 0.003
10 | traincgb logsig 12 purelin  1.153 0.895 0.014
11 | traincgb tansig 14  tansig 1.229 0.888 0.107
12 | traincgb tansig 12 purelin  1.258 0.885 0.004
13 | traincgb logsig 14 purelin  1.308 0.880 0.304
14 | traincgb tansig 12  tansig 1.317 0.880 0.091
15 | traincgb tansig 14 purelin  1.356 0.876 0.391

This group had the best training adjustment of Block A. But again, with
low adjustment for the test. The third highest RZ ,, was around 0.98 with 14

hidden neurons and a combination of the transfer functions. As the N1 was as

large as possible, these results suggest an overfitting (Figure 5.3).
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Figure 5.3: The highest R?

train

of ANN results of Group IV of Block A.

The training of # 1, # 2 and # 3 overlapped. But the test adjustments
were different. The #2 had a negative regression and none was precise or linear.

On the other hand, the highest RZ_, was 0.522, with 70 % of approval
of the training and SSE = 3.278, for topology FF 4-4-1 trainlm, tansig,
purelin.

To evaluate the error, we analysed the values between the predicted and
observed on Figure 5.4. We noticed an odd behavior of the relation, as a
horizontal dispersion error for the training. The test was neither precise nor

accurate.


DBD
PUC-Rio - Certificação Digital Nº 1812690/CA


PUC-Rio- CertificagaoDigital N° 1812690/CA

Results and discussion 63

Test R? 0.522

— 3.8 Training R* 0.700 - 337 .
_E; E o Data Points ..
g % 3.25 = Linear Fit
= 3.6 I Observed = Predicted o
i 0 o o -
= = 3.2
o a0 o 8 L .
T 34 £3.15 '
7 as
39l 3.1
3.05
3 F ¢ Data Points [ L
s Best Linear Fit 3t
N Ohbserved = Predicted
28t : : ‘ : - 2950 : : : : : :
2.8 3 32 34 3.6 3.8 3 3.05 3.1 3.15 3.2 3.25 3.3
Band gap predicted Band gap predicted
5.4(a): Training 5.4(b): Test

Figure 5.4: Regression diagram of FF 4-4-1 trainlm, tansig, purelin Group
IV, Block A.

Figure 5.5 has both training and test dataset prediction. They confirm

the non linearity of output values and the modelling failure.
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Figure 5.5: Prediction behaviour of FF 4-4-1 trainlm, tansig, purelin
Group IV, Block A.

Almost all results had insignificant R2 ,. The %A and dA variables may
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have no direct relation to Eg or only them was not enough, though. Moreover,
not only S but also Vol variables might be direct associated with anatase
phase on the band gap value, but the database might not be as representative.

Nevertheless, the group IV result was not expected. The incorporation of
new data should have improved the ANN model. But only 70 % of the training
data could be predicted and half of the test.

By far trainlm was the algorithm that best fitted, due to have the results
with the highest coefficients with the lowest error in all groups. We can not
say about the transfer functions, because for each network they changed.

Then, even having a diverse dataset, but not a good prediction, we
considered this block was enough explored. Thus we decided to review our

data acquisition establishing the Block B.

5.3
Block B results

Due to the group IV of Block A results, for Block B we decided to collect
other variables corresponding on other crystalline phases of crystallite TiOs,
that is, rutile and brookite phases. We no longer used S and Vol as input
parameters.

While we were collecting the information of the other crystalline phases,
we noticed two issues. The first is that the majority reports ignored the less
present phases and they were not measured. Then we expanded the search
for new reports on literature in order to expand the dataset. The second is
that we should have added the two variables CP and TT in order to avoid
misunderstood and support ANN modelling. For instance, some data reported
the transition type of the bad gap and measured the DRS values with more
than one method, getting two values for Eg. Others also attached the band
gap values with the respective phase.

We reorganized the reports and acquired more, resulting in 220 photo-
catalysts (Tables 5.18 to 5.24).
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Table 5.18: Dataset I for Block B.
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Photocatalyst %A %R %B dA dR dB CP TT Eg Ref
1 SG400 100 0 0 13.0 0 0 1 0 322 [26]
2 SG500 100 0 0 19.0 0 0 1 0 323 [26]
3 SG600 100 0 0 33.0 0 0 1 0 3.22 [26]
4 SG650 96 4 0 38.0 450 O 0 0 3.20 [26]
5) SG700 88 12 0 45.0 55.0 O 0 0 3.16 [26]
6 SGT750 62 38 0 54.0 54.0 O 0 0 3.10 [26]
7 SG800 6 94 0 66.0 870 0 0 0 299 [26]
8 SG900 0 100 0 0 96.0 O 2 0 298 [26]
9 HT 100 0 60 0 0 1 0 311 [26]
10 HB 100 0 9.0 0 0 1 0 3.26 [26]
11 ML 100 0 210 0 0 1 0 327 [26]
12 DP 82 18 0 230 440 0 0 0 318 [26]
13 KM 0 100 0 0 680 0 2 0 3.00 [26]
14 TiO2-A 11 68 21 20.3 = = 0 0 3.04 [52]
15  TiO2-B 71020 267, - 0 0 304 [52
16 TiO2-C 100 0 0 21.1 O 2 0 3.00 [52]
17 TiO2-D 100 0 0 183 0 2 0 3.00 [52]
18 TiO2-E 100 0 0 16.6 0 2 0 3.00 [52]
19 TiO2-F 54 44 0 9.8 = 0 0 0 3.10 [52]
20 TiO2-G 72 28 0 8.5 = 0 0 0 3.10 [52]
21 Optimum 95 5 0 15.0 120 0 0 1 328 [53]
22 pH3 63 0 37 89 0 = 0 1 3.06 [54]
23 pH9 | 100 0 0 133 0 1 1 302 [54]
24 pHIL | 100 0 0 203 0 1 1 300 [54
25 HTMT-300 | 100 0 0 7.3 0.0 0 1 1 316 [55]
26 HTMT-500 | 100 0 0 11.8 0.0 0 1 1 314 [55]
27 HTMT-700 | 100 0 0 22.3 0.0 0 1 1 3.08 [55]
28 TiO2 NTs | 100 0 0 9.8 0.0 0 1 2 3.08 [56]
29  PTF-700 68 32 0 31.3 = 0 0 0 281 [57]
30 P25 83 17 0 350 525 0 0 0 295 [49]
31 2.0 TiCl4 74 26 0 22.5 230 0 0 0 3.07 [49]
32 1.0 TiCl4 87 13 0 220 21.0 O 0 0 3.02 [49]
33 0.5 TiCl4 92 78 0 21.0 190 O 0 0 3.18 [49]
34 #1 4 96 0 28.0 36.0 O 2 2 3.00 [50]
35 #7 95 5! 0 34.0 28.0 0 1 2 320 [50]



DBD
PUC-Rio - Certificação Digital Nº 1812690/CA


PUC-Rio- CertificagaoDigital N° 1812690/CA

Results and discussion

Table 5.19: Dataset II of Block B (continued of Table 5.18).

66

Photocatalyst %A %R %B dA dR dB CP TT Eg Ref
36 HM-R2 0 100 0 0.0 7.5 0 2 0 3.00 [31]
37 HM-R2C 0 100 0 0.0 9.9 0 2 0 3.00 [31]
38 HM-RA48 0 100 0 0.0 10.5 0 2 0 3.00 [31]
39  HM-R48C 0 100 0 0.0 128 0 2 0 3.00 [31]
40 FSP 81 19 0 28.0 125.0 O 0 0 3.17 [5§]
41 A400 100 0 0 9.0 0.0 0 1 0 3.20 [25]
42 SC500 72 28 0 14.0 23.0 0 0 0 3.13 [25]
43 RC500 55 45 0 13.0 21.0 0 0 0 3.05 [25]
44 R800 0 100 0 0.0 43.0 0 2 0 3.00 [25]
45 G1HT4 81 0 19 5.9 0.0 — 0 2 3.30 [59]
46 G2HT4 80 0 20 6.2 0.0 = 0 2 3.23 [59]
47 G3HT4 79 0 21 6.2 0.0 = 0 2 328 [59]
48 G1IM 100 0 0 176 0.0 0 0 2 3.27 [59]
49 G2M 100 0 0 12.8 0.0 0 0 2 325 [59]
50 G3M 83 0 17 109 0.0 = 0 2 324 [59
o1 G1HT2 82 0 18 5.2 0.0 = 0 2 329 [59]
52 G1HT6 82 0 18 6.4 0.0 = 0 2 3.27 [59]
53 G1HTS 91 0 9 6.5 0.0 = 0 2 3.28 [59]
54 G1HT10 93 0 7 6.7 0.0 = 0 2 3.38 [59]
55 G1HT12 95 0 ) 6.9 0.0 = 0 2 3.40 [59]
56 P-25 80 20 0 22.0 85.0 0 0 2 320 [62]
57  Hombikat 100 0 0 7.0 0.0 0 1 2 322 [62]
58 SG-773 100 0 0 21.7 0.0 0 1 2 319 [62]
59 SG-873 100 0 0 369 0.0 0 1 2 319 [62]
60 SG-923 96 4 0 38.0 45.0 0 0 2 319 [62]
61 SG-973 97 3 0 50.0 101.6 O 0 2 317 [62]
62 SG-1023 92 8 0 57.0 86.3 0 0 2 297 [62]
63 SG-HT-423 | 100 0 0 6.5 0.0 0 1 2 326 [62]
64 SG-HT-773 | 100 0 0 11.9 0.0 0 1 2 325 [62]
65 SG-HT-873 | 100 0 0 262 0.0 0 1 2 325 [62]
66 SG-HT-923 | 100 0 0 40.7 0.0 0 1 2 324 [62]
67 SG-HT-973 | 96 4 0 561 1423 0 0 2 313 [62]
68 SG-HT-1023 | 45 55 0 651 105.1 O 0 2 3.14 [62]
69 TiO2-2 100 0 0 10.1 0.0 0 1 1 322 [61]
70 TiO23 | 100 0 138 00 0 1 1 324 [6]]
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Table 5.20: Dataset III of Block B (continued of Table 5.18).
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Photocatalyst %A %R %B dA dR dB CP TT Eg Ref
71 TiO2-ST 97 3 0 28.0 — 0 0 2 3.19 [63]
72 TiO2-US 100 0 0 19.0 0.0 0 1 2 319 [63]
73 Crystal 100 0 0 18.1 0.0 0 1 2 3.40 [64]
74 MT - 600 100 0 0 21.8 0.0 0 1 2 3.10 [65]
75 Meso Titania | 100 0 0 136 00 O 1 1 324 [66]
76 Reference 100 0 0 170 0.0 0 1 2 3.18 [67]
7 T5 00 0 0 110 00 0 1 0 357 [68
78 TiO2 300 100 0 0 7.8 0.0 0 1 0 3.20 [69]
79 PSG 56 44 0 140 o0 0 2 321 [7Y
80 SCS 100 0 0 105 00 O 1 2 326 [72]
81 MW 100 0 0 6.0 0.0 0 1 2 3.64 [72]
82 PSG 56 44 0 14.0 = 0 0 0 326 [72]
83 SCs 00 0 0 105 00 0 1 0 342 [72]
84 MW 100 0 0 6.0 0.0 0 1 0 3.50 [72]
85 PSG 56 44 0 140N o0 0 1 314 [72
86 SCS 100 0 0 10.5 0.0 0 1 1 343 [72]
87 MW 00 0 0 60 00 0 1 1 348 [72]
88 T700 81 19 0 284 31.7 0 0 2 3.01 [73]
89 TAT00 100 0 0 236 0.0 0 1 2 3.16 [73]
90 TT700 96 4 0 284 407 O 0 2 310 [73]
91 TC700 44 56 0 21.8 407 0 0 2 296 [73]
92 NI 100 0 0 14.0 0.0 0 1 2 295 [74]
93 NI450 100 0 0 160 00 O 1 2 3.00 [74]
94 NI500 100 0 0 17.0 0.0 0 1 2 299 [74]
95 NI550 100 0 18.0 0.0 0 1 2 299 [74]
96 undoped TiO2 | 86 14 0 3.9 123 0 0 0 317 [75]
97  dil. HCL #1 0 100 0 0.0 3.8 0 2 2 295 [76]
98 conc. HCL #1 0 100 0 0.0 4.3 0 2 2 298 |[76]
99 conc. HCL#2| 0 100 0 00 254 0 2 2 295 [76]
100 conc. HCL #3 | 0 100 0 0.0 500 O 2 2 3.02 [76]
101 dil. HCL #2 0 0 100 0.0 0.0 7 3 2 325 |[76]
102 dil. HCL #3 0 0 100 0.0 0.0 8 3 2 3.28 [76]
103 dil. HCL #4 0 0 100 0.0 0.0 10 3 2 329 |[76]
104  dil. HCL #5 0 0 100 0.0 0.0 16 3 2 324 |[76]
105  dil. HCL #6 0 100 0 0.0 327 0 2 2 295 [76]
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Table 5.21: Dataset IV of Block B (continued of Table 5.18).

68

Photocatalyst %A %R %B dA dR dB CP TT Eg Ref
106 GLHCL#7| 0 26 74 00 42 4 3 2 315 [76]
107 dilLHCL#7| 0 26 74 00 42 4 2 2 300 [76]
108 dil. HCOL#8| 0 61 40 00 47 9 3 2 316 [76]
109 dil. HCOL#8| 0 61 40 00 47 9 2 2 296 [76]
110 NaCl#1 | 71 13 16 22 71 3 1 2 300 [76]
111 NaCl#2 |30 63 7 27 50 5 1 2 302 [76]
112 P25 80 20 0 251 332 0 1 2 302 [76]
113 TiO2 00 0 0O 60 00 0 1 0 318 [77]
114 pweOBDT | 70 30 0 31.0 0 0 1 307 [78]
115 pure OBDT | 70 30 0 31.0. 0 0 2 275 [78]
116 PVA 30 70 0 90 100 0 0 0 297 [27]
117 CTAB 40 60 0 110 100 0 0 0 299 [27]
118 P25 80 20 0 320 520 0 O 0 323 [27]
119 Brij56 50 50 0 7.0 100 0 0 0 3.02 [27]
120 P25TM | 70 30 0 15650 0 0 2 322 [80]
121 TiO2 100 0 100 00 0 1 0 218 [81]
122 TiO3 100 0 100 00 0 1 0 265 [81]
123 nano01 | 69 31 0 17.0 0 0 0 319 [82
124 nano02 | 74 26 0 12.6 0 0 0 321 [82
125 nano03 | 82 18 0 8.3 0 0 0 327 [82
126 Waterl50 | 73 27 0 12.0 0 0 0 319 [82
127 Water250 | 78 22 0 10.6 0 0 0 32 [82
128  Water350 | 83 17 0 8.1 0 0 0 328 [82
120 Waterd50 | 74 26 0 8.6 0 0 0 321 [82
130 T50 79 21 0 102 0 0 0 32 [82
131 T60 78 22 0 96 0 0 0 324 [82
132 T70 83 17 0 84 0 0 0 328 [82
133 T80 76 24 0 113 0 0 0 323 [82
134 6h 7723 0 106 0 0 0 327 [82
135 12h 82 18 0 83 0 0 0 329 [82]
136 24h 7327 0 102 0 0 0 328 [82
137 calcined 400 | 89 11 0 6.2 0 0 0 329 [82
138 calcined 500 | 82 18 0 82 0 0 0 3.28 [82]
139 calcined 600 | 74 26 0 143 0 0 0 321 [82
140 calcined 800 | 0 100 0 00 211 0 2 0 314 [82]
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Table 5.22: Dataset V of Block B (continued of Table 5.18).

Photocatalyst %A %R %B dA dR dB CP TT Eg Ref

PUC-Rio- CertificagaoDigital N° 1812690/CA

141 TiEt-450 100 0 0 151 00 O 1 1 322 [34]
142 TiEt-600 97 3 0 391~ 0 0 1 321 [34]
143 TiMI-450 100 0 0 96 00 0 1 1 322 [34]
144  TiMI-600 100 0 0 136 00 0 1 1 321 [34]
145 TiHNO3-450 | 55 45 0 146 222 0 0 1 3.02 [34]
146 TiHNO3-600 | 9 91 0 273 375 0 0 1 297 [34]
147 TiO2 100 0 0 269 00 0 1 2 323 [84]
148 P25 80 20 0 3000 =" 0 0 1 300 [8]
149 TiO2 100 0 0 140 00 0 1 2 320 [86]
150 1:10 7 0 0 190 00 0 0 2 307 [8§]
151 1:10dialysed | 7 0O 0 170 00 0 0 2 3.10 [8§]
152 1:50 9 0 0 150 00 0 0 2 312 [8§]
153 150 dialysed | 9 0 0 120 00 0 0 2 313 [8§]
154 TiO2 (HCL24)| 0 21 0 00 200 0 0 2 299 8]
155 TiO2 (HCL,48) | 0 32 0 00 250 0 0 2 301 [8§]
156 P25 72 18 0 250 330 0 0 2 313 [8§]
157 Merck 74 0 600 00 0 0 2 318 [8§
158 T60 100 0 163 00 0 1 2 320 [89]
159 T65 57 43 0 193 171 0 0 2 270 [89]
160 T70 18 8 0 235 190 0 0 2 290 [89]
161 T75 0 100 0 00 210 0 2 2 300 [89]
162 P25 79 21 0 200 230 0 0 0 328 [90]
163 pH5cal300 | 79 O 0O 70 00 7 0 2 320 [91]
164  pH5 cal400 | 83 17 70 00 7 0 2 314 [91]
165  pH5 cal.600 | 88 12 130 00 6 0 2 307 [9]]
166 pH5cal700 | 100 0O 0 310 00 0 1 2 302 [91]
167 pH5cal800 | 12 8 0 390 554 0 0 2 290 [91]
168 pH6cal300 | 80 0O 20 60 00 7 0 2 316 [91]
160 pH6cal400 | 8 0 12 90 00 8 0 2 310 [91]
170 pH6cal600 | 93 0 7 120 00 7 0 2 305 [91]
171 pH6cal700 | 100 O O 260 00 0 1 2 297 [91]
172 pH6cal800 | 6 94 0 380 554 0 0 2 293 [91]
173 pH7cal300 | 91 0 10 70 00 6 0 2 310 [91]
174 pH7cald00 | 92 0 7 80 00 9 0 2 3.06 [91]
175 pH7cal600 | 96 0 3 150 00 8 0 2 3.02 [91]
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Table 5.23: Dataset VI of Block B (continued of Table 5.18).
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Photocatalyst %A %R %B dA dR dB CP TT Eg Ref
176 pHT7 cal. 700 | 100 0 0 31.0 0.0 0 1 2 3.00 [91]
177  pHT cal.800 7 93 0 39.0 554 O 0 2 290 [91]
178 pH8 cal.300 | 92 8 7.0 0.0 6 0 2 3.05 [91]
179  pHS8 cal.400 | 96 4 9.0 0.0 9 0 2 3.03 [91]
180 pHS8 cal.600 | 97 2 13.0 0.0 6 0 2 3.01 [91]
181  pHS8 cal. 700 | 100 0 27.0 0.0 0 1 2 298 [91]
182 pHS8 cal.800 13 87 0 38.0 554 0 0 2 2389 [91]
183  pH9 cal.300 | 91 8 9.0 0.0 6 0 2 3.04 [91]
184  pH9 cal.400 | 94 6 9.0 0.0 8 0 2 3.03 [91]
185  pH9 cal.600 | 97 2 14.0 0.0 6 0 2 3.01 [91]
186  pH9 cal. 700 | 100 0 28.0 0.0 0 1 2 3.00 [91]
187  pH9 cal.800 | 38 62 0 39.0 554 O 0 2 290 [91]
188 TESI 88 12 0 134 153 O 1 1 322 [92]
189 TENI 5 95 0 183 306 O 1 1 332 [92]
190 TEPCI 79 21 0 152 183 0 1 1 3.25 [92]
191 TECI 100 0 0 15.2 0.0 0 1 1 3.26  [92]
192 TEAI 77025 0 152 183 0 1 1 321 [92)
193 TESI 88 12 0 134 153 0 2 2 283 [92]
194 TENI 5) 95 0 183 306 O 2 2 3.05 [92]
195 TEPCI 79 21 0 152 183 O 2 2 296 [92]
196 TEAI 77 23 0 152 183 0 2 2 277 [92]
197 R1 - 80 0 100 0 0.0 5.6 0 2 2 3.16 [93]
198  Figurede | 100 0 0 149 00 0 1 1 335 [87]
199 Figure 6al-2 | 100 0 0 25.0 0.0 0 1 1 330 [87]
200 Figure 4f 37 63 0 16.2 = 0 0 1 314 [87]
201 Figure6b | 53 47 0 1920 =] 0 0 1 322 [87
202 Figure 5b 22 78 0 35.0 = 0 0 1 312 [87]
203 Figure 5c 90 10 0 15.1 = 0 0 1 330 [87]
204 Figuwedd | 44 56 0 2330 -~ 0 0 1 310 [87]
205  Figure 4c 100 0 00 302 0 2 1 299 [87]
206 Figure 4g 100 0 00 171 0 2 1 316 [87]
207  Figure 4h 00 0 00 217 0 2 1 313 [87]
208 P-25 70 30 0 200 = 0 0 1 3.01 [87]
200  TWPI | 100 0 57 00 0 1 1 341 [04]
210 TWSI 100 0 171 0.0 0 1 1 3.33 [94]
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Table 5.24: Dataset VII of Block B (continued of Table 5.18).

PUC-Rio- CertificagaoDigital N° 1812690/CA

Photocatalyst %A %R %B dA dR dB CP TT Eg Ref
211 TWNI 100 0 0 15.2 0.0 0 1 1 332 [94]
212 TWPCI 100 0 0 183 0.0 0 1 1 329 [94]
213 TWCI 00 0 0 152 00 0 1 1 346 [94]
214 TWAI 100 0 0 13.0 0.0 0 1 1 341 [94]
215 powder A-480 100 0 0 104 0.0 0 1 2 3.13 95
216  powder A -550 100 0 0 128 0.0 0 1 2 3.18 [95]
217  powder A-600 | 100 0 0 149 00 0 1 2 323 [95]
218 as-prepared SM-1 | 56 0 45 6.2 00 3 0 2 3.16 [96]
219 as-prepared SM-2 | 50 10 41 69 00 9 0 2 3.19 [96]
220 P25 80 20 0 370 90.0 O 0 2 3.08 [96]

Before few model attempts, we also noticed something that may have

confused the recognition of ANN models. It was another measurement by

literature issue: the technique used for crystallite size. As the Scherrer equation

was far more employed, we included corresponding groups that only have data

from it, that is, without the data value from Rietveld refinement.

The groups arrangement considered the interference of rutile and brookite

phases as input parameters and the influence of XRD measurement with only

Scherrer equation (groups S). Remembering that we used other ANN types in
this Block.
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5.3.1
Block B - Group |
This set has 173 vectors (Tables 5.18 to 5.24), 8 inputs, and one output,
getting a matrix of variables and vectors of 1557 contents. The training data
has 140 photocatalysts. Were developed 216 topologies for this group, where
on Table 5.25 shows fifteen of them according to the highest R? . .
This group had low SSE (around 1), a good adjustment for training (more
than 80 %) and a bad for the test (almost null). The first three had SSE smaller
than one, a cascade network with trainlm and logsig for the transfer function

on the first hidden layer. Moreover, the number of hidden neurons were near

the maximum as possible without error.

Table 5.25: Results of Group I (% A, % R, % B, dA, dR, dB, CP, TT) from
Block B with the highest R?

train*

# | Type Alg. F1 N1 Fy SSE R?_. R,

1 CF  trainlm logsig 13 purelin 0.828 0.885 0.001
2 CF  trainlm logsig 13 tansig 0.861 0.880 0.001
3 CF  trainlm logsig 11 tansig 0.885 0.877 0.009
4 FF  trainlm logsig 12 tansig 0.998 0.861 0.010
5 | ELM trainlm tansig 13 purelin 1.009 0.859 0.026
6 | ELM trainlm tansig 12 purelin 1.011 0.859 0.000
7 | ELM trainlm tansig 13 tansig 1.021 0.858 0.016
8 FF  trainlm tansig 13 tansig 1.022 0.858 0.012
9 CF  trainlm tansig 12 purelin 1.035 0.856 0.000
10 | ELM trainlm logsig 12 tansig 1.058 0.853 0.012
11| CF  trainlm tansig 13 purelin 1.059 0.852 0.017
12 | ELM trainlm tansig 11 tansig 1.061 0.852 0.02

13| FF  trainlm logsig 13 purelin 1.067 0.851 0.009
14 | CF  trainlm logsig 12 purelin 1.069 0.851 0.012
15 | ELM trainlm logsig 10 purelin 1.074 0.850 0.044
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5.3.2
Block B - Group Il

This set has 183 vectors (Tables 5.18 to 5.24), 6 inputs, and one output,
getting a matrix of variables and vectors of 1241 contents. The training data
has 148 photocatalysts. Were developed 465 topologies for this group, where
on Table 5.14 shows fifteen of them according to the highest R?

train*
This group had a small improvement from Group I. Tansig was the

transfer function used on topologies with the highest R? . and ELM network

train

also well adjusted.

Table 5.26: Results of Group 1T (% A, % R, dA, dR, CP, TT) from Block B
with the highest R?

train*

# | Type Alg. F1 N1 Fy SSE R:. RZ,
1 CF  trainlm tansig 18 purelin 0.839 0.892 0.018
2 | ELM trainlm tansig 17 purelin 0.840 0.892 0.000
3 | ELM trainlm tansig 18 tansig = 0.861 0.889 0.002
4 FF  trainlm tansig 18 purelin 0.867 0.888 0.006
5 | ELM trainlm logsig 17 tansig 0.875 0.887 0.039
6 CF  trainlm logsig 18 purelin 0.888 0.885 0.001
7 CF  trainlm logsig 18 tansig 0.888 0.885 0.024
8 | ELM trainlm tansig 18 purelin 0.895 0.885 0.023
9 | ELM trainlm tansig 15 tansig 0.895 0.885 0.000
10 | ELM trainlm tansig 15 purelin 0.901 0.884 0.000
11 | ELM trainlm tansig 16 tansig 0.914 0.882 0.024
12 | ELM trainlm logsig 17 purelin 0.916 0.882 0.004
13| CF  trainlm tansig 16 tansig 0.923 0.881 0.010
14 | FF  trainlm logsig 17 tansig 0.930 0.880 0.008
15 | ELM trainlm tansig 17 tansig 0.954 0.877 0.002
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5.3.3

Block B - Group Il

74

This set has 220 vectors (Tables 5.18 to 5.24), 4 inputs, and one output,

getting a matrix of variables and vectors of 1100 contents. The training data

has 177 photocatalysts. Were developed 465 topologies for this group, where

on Table 5.14 shows fifteen of them according to the highest R?

train*

As the previous results of Block B, this group had a small improvement.

But now there is not an agreement with the best network type and transfer

function.

Table 5.27: Results of Group III (% A, dA, CP, TT) from Block B with the

highest R? . .
# | Type Alg. F1 N1 Fy SSE R? . R,
1 | ELM trainlm tansig 28 tansig 0.831 0.905 0.006
2 CF  trainlm logsig 24 purelin 0.833 0.905 0.004
3 | ELM trainlm tansig 28 purelin 0.842 0.904 0.016
4 | ELM trainlm tansig 26 tansig 0.846 0.904 0.001
5 CF  trainlm tansig 28 purelin 0.850 0.903 0.026
6 FF  trainlm logsig 26 purelin 0.856 0.902 0.023
7 | ELM trainlm tansig 26 purelin 0.861 0.902 0.017
8 FF  trainlm logsig 24 purelin 0.873 0.901 0.026
9 CF  trainlm tansig 26 purelin 0.891 0.899 0.034
10 | FF  trainlm logsig 26 tansig 0.894 0.898 0.011
11| CF  trainlm logsig 28 purelin 0.896 0.898 0.010
12| CF  trainlm logsig 26 purelin 0.933 0.894 0.000
13 | ELM trainlm logsig 22 purelin 0.935 0.893 0.048
14 | FF  trainlm tansig 22 purelin 0.936 0.893 0.002
15| CF  trainlm logsig 28 tansig 0.943 0.893 0.005
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5.3.4
Block B - Group IV

This set has 220 vectors (Tables 5.18 to 5.24), 3 inputs, and one output,
getting a matrix of variables and vectors of 830 contents. The training data
has 177 photocatalysts. Were developed 612 topologies for this group, where
on Table 5.14 shows fifteen of them according to the highest R? . .

This group shows a decay on the coefficients results.

Table 5.28: Results of Group IV (% A, dA, CP) from Block B with the highest
R2

train*

# | Type Alg. F1 N1 Fy SSE R? . R,
1 FF  trainlm tansig 29 tansig 1.429 0.837 0.004
2 CF  trainlm tansig 33 tansig 1.436 0.836 0.000
3 CF  trainlm tansig 33 purelin 1.458 0.834 0.002
4 CF  trainlm tansig 31 purelin 1.466 0.833 0.020
d CF  trainlm logsig 25 tansig 1.543 0.824 0.016
6 FF  trainlm tansig 35 purelin 1.544 0.824 0.016
7 CF  trainlm logsig 29 purelin 1.560 0.822 0.000
8 CF  trainlm logsig 27 tansig 1.586 0.819 0.013
9 FF  trainlm logsig 25 tansig 1.616 0.816 0.001
10 | FF  trainlm logsig 35 purelin 1.617 0.816 0.006
11 | ELM trainlm tansig 19 tansig 1.630 0.814 0.008
12 | ELM trainlm tansig 21 tansig 1.709 0.805 0.026
13| CF  trainlm logsig 17 purelin 1.756 0.800 0.001
14 | FF  trainlm logsig 29 purelin 1.763 0.799 0.034
15| CF  trainlm tansig 21 tansig 1.780 0.797 0.001
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5.3.5
Block B - Group V

This set has 220 vectors (Tables 5.18 to 5.24), 3 inputs, and one output,
getting a matrix of variables and vectors of 830 contents. The training data
has 177 photocatalysts. Were developed 612 topologies for this group, where
on Table 5.14 shows fifteen of them according to the highest R? . .

This group also shows a decay on the coefficients results, but better
than group IV. Thus, the variables T'T support the modelling adjustment and
improve the response when they are used together. The improvement of the
coefficients without the information of rutile and brookite phases (group III)

suggests they do not improve the fitting.

Table 5.29: Results of Group V (% A, dA, TT) from Block B with the highest
RQ

train*

# | Type Alg. F1 N1 Fy SSE R?_. R,
1 FF  trainlm logsig 35 purelin 1.293 0.853 0.011
2 FF  trainlm logsig 35 tansig = 1.300 0.852 0.006
3 CF  trainlm logsig 35 purelin 1.312 0.850 0.004
4 | ELM trainlm tansig 35 purelin 1.313 0.850 0.003
5 | ELM trainlm tansig 33 purelin 1.322 0.849 0.009
6 CF  trainlm logsig 33 tansig 1.331 0.848 0.001
7 | ELM trainlm tansig 25 tansig 1.340 0.847 0.005
8 | ELM trainlm logsig 33 tansig 1.344 0.847 0.011
9 CF  trainlm tansig 35 purelin 1.350 0.846 0.000
10 | CF  trainlm tansig 33 purelin 1.356 0.846 0.001
11 | FF  trainlm tansig 35 tansig 1.356 0.845 0.000
12| CF  trainlm tansig 31 purelin 1.361 0.845 0.006
13| FF  trainlm tansig 31 purelin 1.361 0.845 0.014
14 | FF  trainlm tansig 35 purelin 1.364 0.845 0.004
15| FF  trainlm logsig 33 purelin 1.365 0.845 0.000
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5.3.6
Block B - Group SI
This set has 149 vectors (Tables 5.18 to 5.24), 8 inputs, and one output,
getting a matrix of variables and vectors of 1341 contents. The training data
has 119 photocatalysts. Were developed 112 topologies for this group, where
on Table 5.14 shows fifteen of them according to the highest R? . .
This group had a slightly worse result than group I. Although the low
adjustment of the test, there appears a better RZ . as # 9 with 0.353. Th
highest RZ , was 0.392 with 0.827 for training, SSE = 1.144, topology ELM

8-10-1 trainlm, tansig, purelin.

Table 5.30: Results of Group SI (% A, % R, % B, dA, dR, dB, CP, TT) from
Block B with the highest R?

train*

# | Type Alg. F1 N1 Fy SSE R?_. R2,

1 | ELM trainlm tansig 11 purelin = 0.895 0.865 0.046
2 CF  trainlm logsig 11 tansig 0.990 0.850 0.001
3 | ELM trainlm logsig 10 tansig = 1.049 0.841 0.016
4 CF  trainlm logsig 9  tansig 1.052 0.841 0.235
5 FF  trainlm tansig 11 tansig 1.056 0.840 0.279
6 FF  trainlm logsig 11 tansig 1.058 0.840 0.032
7 FF  trainlm logsig 9  tansig 1.065 0.839 0.007
8 CF  trainlm logsig 11 purelin 1.072 0.838 0.035
9 | ELM trainlm logsig 9 purelin 1.073 0.838  0.353
10 | CF  trainlm tansig 11 tansig 1.075 0.837 0.006
11 | ELM trainlm logsig 11 tansig 1.077 0.837 0.143
12| CF  trainlm tansig 10 tansig 1.080 0.837 0.000
13 | ELM trainlm logsig 11 purelin 1.091 0.835 0.131
14 | ELM trainlm logsig 9  tansig 1.109 0.832 0.028
15 | ELM trainlm tansig 9  tansig 1.120 0.831 0.013
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5.3.7
Block B - Group SlI

This set has 163 vectors (Tables 5.18 to 5.24), 6 inputs, and one output,
getting a matrix of variables and vectors of 1141 contents. The training data
has 130 photocatalysts. Were developed 397 topologies for this group, where
on Table 5.14 shows fifteen of them according to the highest R?

train®
This group had a small improvement from Group SI. The highest RZ ,
was 0.531, with R? = 0.825, SSE = 1.261, for topology ELM 6-11-1

train

trainlm, logsig, tansig.

Table 5.31: Results of Group SII (% A, % R, dA, dR, CP, TT) from Block B
with the highest R?

train*

# | Type Alg. F1 N1 Fy SSE R:. RZ,
1 | ELM trainlm tansig 16 tansig 0.800 0.889 0.173
2 CF  trainlm logsig 15 purelin 0.853 0.881 0.199
3 | ELM trainlm tansig 16 purelin 0.867 0.879 0.003
4 | ELM trainlm tansig 15 tansig 0.902 0.874 0.020
5 FF  trainlm tansig 15 purelin 0.904 0.874 0.048
6 | ELM trainlm logsig 16 purelin 0.915 0.873 0.144
7 | ELM trainlm tansig 15 purelin 0.923 0.872 0.072
8 CF  trainlm tansig 16 tansig 0.936 0.870 0.005
9 | ELM trainlm logsig 15 tansig 0.950 0.868 0.072
10 | ELM trainlm logsig 16 tansig 0.951 0.868 0.000
11| FF  trainlm tansig 14 purelin 0.967 0.865 0.062
12 | ELM trainlm tansig 11 tansig 0.976 0.864 0.032
13| CF  trainlm tansig 15 purelin 0.980 0.864 0.013
14 | FF  trainlm logsig 16 purelin 0.987 0.863 0.207
15| CF  trainlm logsig 13 tansig 0.990 0.862 0.014
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5.3.8

Block B - Group Sl

79

This set has 191 vectors (Tables 5.18 to 5.24), 4 inputs, and one output,

getting a matrix of variables and vectors of 955 contents. The training data

has 154 photocatalysts. Were developed 397 topologies for this group, where

on Table 5.14 shows fifteen of them according to the highest R?

train*

This group had a small improvement from Group SII, but it has lower
test coefficients. Where the highest could validate 48.3 % (test) of only 29.8
% adjustment of the training, with a high SSE 5.692 (topology CF 4-10-1

trainbr, logsig, tansig.

Table 5.32: Results of Group SIIT (% A, dA, CP, TT) from Block B with the

highest RZ . .
# | Type Alg. F1 N1 Fy SSE R?_. R,
1 CF  trainlm logsig 24 purelin 0.803 0.901 0.164
2 CF  trainlm tansig 24 purelin 0.805 0.901 0.012
3 FF  trainlm logsig 22 tansig = 0.859 0.894 0.002
4 | ELM trainlm tansig 24 tansig 0.860 0.894 0.077
5 CF  trainlm logsig 24 tansig 0.870 0.893 0.007
6 FF  trainlm logsig 24 purelin 0.870 0.893 0.109
7 | ELM trainlm tansig 20 purelin 0.882 0.891 0.047
8 | ELM trainlm tansig 24 purelin 0.905 0.888 0.153
9 FF  trainlm logsig 20 tansig 0.905 0.888 0.162
10 | FF  trainlm logsig 24 tansig 0.906 0.889 0.031
11| FF  trainlm logsig 20 purelin 0.914 0.887 0.090
12 | CF  trainlm tansig 22 tansig 0.928 0.886 0.002
13 | ELM trainlm tansig 18 purelin 0.962 0.881 0.014
14 | ELM trainlm logsig 24 purelin 0.965 0.881 0.000
15| FF  trainlm tansig 24 purelin 0.965 0.881 0.220
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5.3.9

Block B - Group SIV
This set has 196 vectors (Tables 5.18 to 5.24), 3 inputs, and one output,

getting a matrix of variables and vectors of 784 contents. The training data

80

has 156 photocatalysts. Were developed 540 topologies for this group, where

on Table 5.14 shows fifteen of them according to the highest R?

train*

This group also shows a decay on the coefficients results, just the same

that happened on Group IV.

Table 5.33: Results of Group SIV (% A, dA, CP) from Block B with the highest

Riin-
# | Type Alg. F1 N1 Fy SSE R?_. R,
1 CF  trainlm tansig 25 tansig 1.485 0.817 0.312
2 CF  trainlm tansig 29 purelin 1.501 0.815 0.000
3 FF  trainlm tansig 31 tansig 1.534 0.811 0.010
4 CF  trainlm tansig 23 purelin 1.538 0.810 0.000
5 CF  trainlm logsig 29 tansig 1.562 0.807 0.081
6 CF  trainlm logsig 25 tansig 1.593 0.803 0.002
7 FF  trainlm logsig 23 purelin 1.621 0.800 0.138
8 | ELM trainlm tansig 19 purelin 1.626 0.799 0.003
9 CF  trainlm tansig 21 tansig 1.660 0.795 0.029
10 | ELM trainlm tansig 21 tansig 1.683 0.792 0.016
11| FF  trainlm logsig 19 purelin 1.707 0.789 0.009
12| FF  trainlm tansig 19 tansig 1.729 0.787 0.031
13| FF  trainlm tansig 11 tansig 1.746 0.785 0.121
14| CF  trainlm tansig 15 tansig 1.781 0.780 0.000
15| FF  trainlm logsig 19 tansig 1.794 0.779 0.189
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5.3.10
Block B - Group SV

This set has 196 vectors (Tables 5.18 to 5.24), 3 inputs, and one output,
getting a matrix of variables and vectors of 784 contents. The training data

has 156 photocatalysts. Were developed 540 topologies for this group, where
on Table 5.14 shows fifteen of them according to the highest R?

train*

2
train

This group had an improvement again, with the highest results of R
of Block B. However, the RZ_, was low too, where the highest could adjust
only 42.8 % (test) of 28.3 % for training, with a high SSE 5.01 from topology
ELM 3-3-1 trainlm, tansig, tansig.

Table 5.34: Results of Group SV (% A, dA, TT) from Block B with the highest
RQ

train*

# | Type Alg. F1 N1 Fy SSE R?_. R,
1 CF  trainlm tansig 31 purelin 0.744 0.908 0.001
2 | ELM trainlm tansig 31 purelin 0.813 0.900 0.006
3 | ELM trainlm tansig 27 purelin @ 0.823 0.898 0.000
4 FF  trainlm logsig 31 purelin 0.830 0.898 0.019
5 | ELM trainlm logsig 31 tansig 0.831 0.898 0.107
6 CF  trainlm logsig 31 tansig 0.865 0.893 0.016
7 CF  trainlm logsig 31 purelin 0.870 0.893 0.002
8 | ELM trainlm tansig 29 purelin 0.882 0.891 0.009
9 CF  trainlm tansig 27 purelin 0.904 0.888 0.018
10 | ELM trainlm tansig 31 tansig 0.907 0.888 0.098
11| CF  trainlm logsig 29 purelin 0.910 0.888 0.002
12| CF  trainlm logsig 29 tansig 0.924 0.886 0.000
13| FF  trainlm tansig 31 purelin 0.928 0.885 0.019
14 | FF  trainlm tansig 29 purelin 0.933 0.885 0.021
15 | ELM trainlm tansig 25 purelin 0.937 0.884 0.005
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In order to compare the results, we summarized the highest results of each
group on Table 5.35. We highlighted the cells with the highest coefficients of

R? and the lowest SSE.

Table 5.35: The best topologies of each group: SSE, R? results.

Group | Type Alg. F1 N1 Fy SSE R? .. R,
I CF  trainlm logsig 13 purelin 0.828 0.885 0.001
11 CF  trainlm tansig 18 purelin 0.839 0.892 0.018
111 ELM trainlm tansig 28 tansig 0.831 0.905 0.006
v FF  trainlm tansig 29 tansig 1.429 0.837 0.004
\% FF  trainlm logsig 35 purelin 1.293 0.853 0.011
SI ELM trainlm tansig 11 purelin 0.895 0.865 0.046
SII ELM trainlm tansig 16 tansig 0.800 0.889 0.173
SIII CF  trainlm logsig 24 purelin 0.803 0.901 0.164
SIV CF  trainlm tansig 25 tansig 1.485 0.817 0.312
SV CF  trainlm tansig 31 purelin 0.744 0.908 0.001

We noticed that groups S had better coefficients, implying that values
from the same technique have more accordance. Neither the rutile nor the
brookite phases had a significant effect on the prediction, maybe because they
are not as studied as anatase phase. If you have less report, less you know
about this variable, notably for brookite phase [59, 76]. The influence of less
information of a parameter in a network is also reported on article Yildirim,
2011 [97] with the variable of Temperature. On the other hand, CP and TT
variables changed the models.

By far trainlm was the best algorithm, but transfer functions varied for
each result. We expected that trainbr could have adjusted better, according to
its use and success on literature. The behaviour of model topologies evaluation
and the number of hidden neurons are shown on Figure 5.6 for the best result,
group SIII. Except for specific combinations, trainlm (the middle yellow bar)
had the smallest SSE with a high number of hidden neurons (higher than 18

neurons).
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Figure 5.6: SSE performance for hidden neurons numbers of Group SIII of

Block B.
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Even though group SIII had the best result (high SSE and R? train),
it presented a bad adjustment to the test dataset (low R? test). Both linear
and angular coefficients of the training had good adjustment, however the test
data has diverged and the output predicted was negative, having no physical

meaning (Figure 5.7).
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Figure 5.7: Prediction behaviour of Group SIII of Block B.

The group SII's network of ELM 6-11-1 trainlm, logsig, tansig
topology had an interesting adjustment, showing a SSE = 1.21 and R? =
82.5 % for training and R? = 53.1 % for test. Its regression diagrams are
shown on Figure 5.8. The training shows a good adjustment, but the test is

very dispersed around the best linear fit line.
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Figure 5.8: Regression diagram of ELM 6-11-1 trainlm, logsig, tansig
Group SII, Block B.

Figure 5.9 shows the datasets’ prediction behaviour. There are some
inconsistencies between the training and the test, such as points 8, 12, 14,

15, 18 of test dataset because their predicted values were the network value

limits.
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Figure 5.9: Prediction behaviour of ELM 6-11-1 trainlm, logsig, tansig
Group SII, Block B.

It can also be noticed that even though the training behaviour seems
to have connected points, some of them were not able to be predicted by the
network. Such as points 63, 67, 70, 72, 82, 89. On the other hand, the test

seems to have abrupt behaviour, and the set was not well predicted.
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5.3.11
Block B multilayer

86

The Group SIII was investigated with more hidden layers, which six

results with the highest coefficients of two and three hidden layers are shown

on Table 5.36).

Table 5.36: The third best topologies of group SIII of Block B with more hidden

layers.
Type F1 N1 F2 N2 Fy SSE R . R,
CF logsig 4 tansig 6 purelin 2.238 0.843 0.507
CF tansig 4 logsig 4 purelin 3.770 0.735 0.504
FF logsig 6 logsig 4  tansig 3.199 0.775 0.465
(a) Two hidden layers
Type F1 N1 F2 N2 F3 N3 Fy SSE Train Test
CF logsig 4 logsig 6 tansig 8  tansig 1.353 0.905 0.444
FF logsig 6 tansig 6 logsig 8 purelin 1.309 0.908 0.341
CF logsig 4 logsig 6 logsig 10 purelin 0.787 0.945 0.334
(b) Three hidden layers

We investigated the regression of observed and predicted values of the

highest coefficients of both training and test, shown on Figures 5.10, 5.11 and

5.12.

The band gap regression diagram shows a dispersion on both training

and test, despite of having a lot of training points well fit

ted (on Figure 5.10).
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Figure 5.10: Regression diagram of CF 4-4-6-1 trainlm, logsig, tansig,

purelin Group SIII, Block B.

The Figure 5.11 shows that the values are more disperse than CF 4-4-6-1

topology (Figure 5.10).
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Figure 5.11: Regression diagram of CF 4-4-4-1 trainlm, tansig, logsig,
purelin Group SIII, Block B.

The Figure 5.12 shows that it is the worst fitting than the three we have

just analysed. We notice here again the tendency of horizontal points.
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Figure 5.12: Regression diagram of FF 4-6-4-1 trainlm, logsig, logsig,
tansig Group SIII, Block B.

The Figure 5.12 shows all training regression diagrams together. The CF
4-4-4-1 network is less accurate than the other two, and the FF 4-6-4-1 is more
disperse than the CF 4-4-6-1, which seems to be the most adjusted network.

From Figure 5.14, the prediction behaviour reveals a coherent band gap
adjustment and limits, scale 2 to 3.8 eV for the test. However, this network
is able to predict only half of the new information. The model slightly follows
the behaviour of the band gap value and disagrees in three major points: 7%,
11" and 37", As the system behavior is the first achievement of modelling,

this result reveals the potential of this study.
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Figure 5.14: Prediction behaviour of CF 4-4-6-1 trainlm, logsig, tansig,

purelin Group SIII, Block B.
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Thus, the results of group SII ELM 6-11-1 and group SIII CF 4-4-6-1
can be compared. The regression diagram (Figure 5.15 of training shows both
networks are well adjusted, but the SII seems to have sparser points. The test
regression shows both did not predicted well, and the SII network seems to

have horizontal lines of data dispersion.

38 @ SUTELM 6111 trainim, logsis, tunsis a8 o)
<. observed = predicted - s
36[ @ SIIICF 4461 trainim, logsig, tansig, purelin 899 . ? ° 8
Z-.:m “ 234 R Q @
EE B o S8 P69
: 2 89
i@ z 3 q .
f 28 :_'_ 28 T
iﬂ 26 ) EC 26
:‘"E 24 ’ . :”Q: 2.4 9
22 - 2 @ 0
2 Q
22 22 24 28 28 3 32 34 36 38 27 28 29 3 81 82 a3 34 35
Band gap predicted [eV] Band gap predicted [eV]
5.15(a): Training 5.15(b): Test

Figure 5.15: Regression diagrams comparison of groups SII (diamond) and SIIT
(circle) networks.

Furthermore, the networks (SII and SIII) had the same behaviour in
similar points that could not be predicted in both cases. However, the SIII
network behaviour is softer, maybe because it has two hidden layers. The
strategy of a multilayer network improved the coefficients. Moreover, this
network has 154 training vectors, which is larger than SIT ELM 6-11-1 dataset
with 130 training vectors. Therefore, the network of topology CF 4-4-6-1
trainlm, logsig, tansig, purelin is the most adjusted model. Its weights
and biases are shown below in Table 5.37.

Nevertheless, the model with the highest coefficients of Block B multi-
layer could not be validated because its test correlation coefficient has failed
(R2.., = 50.7 %). Considering the exhaustive modelling investigation and the
disparity of literature reports, it was considered worthy the discussion of the
characterization techniques.

There is no common sense or standard evaluation of the synthesis and
characterization of TiO,, especially the measurement of the band gap. There
are researches that use DRS with different techniques namely as Kubelka-
Munk [26, 82], Tauc plot or modified Kubelka-Munk[54, 62] while other
researches employ the information directly from the Absorption Spectra [52,

53]. Even though the first and the second techniques can be used to classify
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Table 5.37: Weights and biases of CF 4-4-6-1 trainlm, logsig, tansig,
purelin Group SIII, Block B.

biases | neuron %A dA CP TT
1,589 1 2.020 -4261 0434 -2.004
. -0.756 2 20491  2.808  0.892 -1.184
Hidden 1| ;09 3 5891 -3.128  4.028  0.719
11.450 4 5542 14.850 0509  6.754
230.035 1 16.097 -3.680 12726 2.526
1.628 2 15.303  12.555 -1.363 -23.342
. ~18.498 3 12.809 5291  -0.170 -8.804
Hidden 2 | . .0 4 92508 1.820 -14.560  3.399
-8.574 5 1.294 -12.546 -3.318 -3.211
0.029 6 4,092  -3.885 0777  -4.131
Output | -1.957 1 9313 0824 -1.252  0.509
neuron 1 2 3 4
. 1 50.866  12.082 1.934  23.293
Hidden 1 2 22808 -53.428 -7.197 -2.545
x 3 20.677 0.126  8.806 15.771
4 229.269  39.188 -25.969 -7.282
Hidden 2 5 213.689 39.370 1.239  -1.416
6 5819 -2529 -1.924  3.755
Hidden 1 x Output 1 3558 4568  4.699  -1.593

Hidden 2 x Output
neuron 1 2 3 4 5 6
1 -0.728 1.724 -1.042  -0.460 -1.226 1.887

the transition type of the material as direct or indirect, allowed or forbidden,
this matter was not always addressed in the scientific reports [26, 83].

Besides, some inconsistencies were noticed, such as authors [34, 54, 72]
which have measured the direct band gap though the Modified Kubelka-Munk
for pure anatase phase, but considered it having indirect band gap.

It is noteworthy, in general, the values obtained are not reported with
their errors involved.

TiO, phases influence on the photocatalytic performance [22, 23, 50, 49],
due to the indirect band gap of anatase phase and direct band gap of
rutile phase. Further, the P25 shows different amounts of anatase and rutile
[28, 30, 38]. Though there is a lot of debate about it [23, 98], no mathematical
explanation was found. Therefore, it is important to analyse it properly.

In Lépez and Gomez [38], the size effect (for Nano and Bulk dimensions),
the phase aspect (with P25 and pure anatase synthesized) and the band gap
evaluation (with Absorption, Kubelka-Munk, Tauc-plot measurements) were

investigated, showing slight changes. The results consolidate the importance
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of considering an appropriate type of transition. For instance, the Tauc plot
with indirect allowed transition is the most used. It has an accurate result for
the bandgap of TiO4 synthesized by the sol-gel method and for the commercial
P25.

The approach of Owolabi and Gondal [14] was quite similar to the present
work. They used neural models to predict the band gap of doped titanium
dioxide. The input variables was also a photocatalyst characteristic, the crystal
lattice distortion, represented as the lattice parameters (a,c). All data were
taken from literature and they used a statistical analysis to support. It is
reported a good adjustment from the model. But it only discussed the error
value (root mean square error (RMSE) of 13.13 %) and did not mention the
correlation coefficients. The RMSE considering the best topology for group
SIII, with SSE 2.238 and 154 training variables, is 12.0 %, and for group SII
(with SSE 1.21 and 130 variables) is 9.6 %, both are lower than the Owolabi
paper, showing that only the error does not represent the network adjustment.
The present study explored more carefully ANN tool, with computational and

mathematical criteria, such as ANN types and a larger database.

5.4
Critical analysis

The benefit of our methodology was to explore several interconnection
structures, with and without recurrence network, using backpropagation that
allows the minimization of error in a more efficient way than classical methods
of modelling. Thus, we could exhaustive explore mathematical models through
the combinations of the ANN type, transfer functions, number of hidden layers,
training algorithm, number of hidden neurons, number of input parameters. A
total of 4943 topologies were explored.

The model network is directly connected to the supervised dataset.
Thinking about the nature of catalysis be inconstant, the learning rule for
pattern recognition is a challenge that we could not achieve. It might have
happened because this type of model requires a more accurate implementation
of the physical-chemical characteristics due to that non classical nature. Or also
a missing crystal characteristic, such as lattice parameter distortion. Since a
parameter that could adjust the network is not evident, it should be further
investigated.

Using literature data have advantages and disadvantages points. The
advantages are that the evaluation can be of diverse experimental data and
does not depend on laboratory analysis. Despite being an arduous work to

collect manually each information from different reports, it only needs a single
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well adjusted model to be succeed and then be generalized, studied and
estimate the variables effect.

However, interpreting and comparing the results of other research groups
should be more careful. So, the disadvantages are if a piece of selected
information is not frequently used or applied, we might have disregard its
influence. Just like happened with the rutile and brookite phases variables,
where they did not influence the models’ adjustment. The reason can be the
variables are not actually connected. Or also, be a result of having far less
information (on corresponding variables percentage and crystallite size).

Another disadvantage of using literature data is it might have a lack
of standardization and boundary of information, variable, or scenario. As a
consequence, the models can present inconsistencies.

For the database stability, the variables range should be in agreement,
that is, the measurements in the same unit, having statistical information
(error and variance, for example) and having the same order of magnitude (to
not succumb a variable influence). This logic is supported by the crystallite
size in the present work, where the Scherrer Equation was used for variables on
groups S on Block B and had a better model adjustment than mixed groups
with Scherrer equation and Rietveld refinement.

Despite so many variability in the database and ANN topologies, the
result with highest coefficients found (which was from Block B) had fifty
percent of success in addition to behaviour in harmony with predicted and
observed data, that is, with a good precision, but a bad accuracy, suggesting
that it should be further investigated.

This work assessed a literature report with no standard calculations for
the band gap, in addition to incoherent reported results (such as reported by
Lépez and Gémez [38]), with a modelling strategy of ANN. Under these cir-
cumstances, the present work provided a qualified and extensive investigation

of titanium dioxide parameters as a photocatalyst.
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Conclusion

The present work was carried out to explore TiO4 properties relationship
using Artifial Neural Networks. The band gap value was used as an indirect
variable of photocatalytic performance. The database was obtained from the
literature, in order to be as representative, large, and diverse as possible.

The methodology had four main steps: data acquisition, data analysis,
ANN development, and ANN settings. As a result, two blocks, namely Block
A and Block B, were studied with different input parameters. Moreover, each
block was arranged into groups to explore the influences of each variable in
pairs (A) and the relevant similarities (B), using support variables for the band
gap identification, CP and TT.

The Block A input parameters were the crystallite size and percentage
rate for anatase phase, the specific surface area and the pore volume. The first
attempt had the smallest database, on the other hand the best adjustment
model with 99.82 % for training and 90.93 % for test. Since this database does
not represent all parameters on literature beyond that of the own dataset, the
database was four times increased and new models were developed.

The groups results did not succeed. The predict and observed values had
a bad behaviour, and they had not been well adjusted. Besides this, the group
I’s result was the worst. However, both parameters % A and dA are obtained
from XRD technique. Thus, the modelling was not reaching the nuances and
getting into conflict, that is, the adjustments search of weights and bias were
stopping before the global minimum.

The Block B input parameters were the crystallite size and percentage
rate for each phase (anatase, rutile and brookite), the correspondent phase
and the transition type of the band gap. This Block was a reformulation of the
worst group result of Block A. Since group I'V’s inputs are structural properties
(crystalline phases), they are more coherent variables to be further explored
than the other parameters.

The impact of having a robust input parameters was that the system
might be more bounded. As a consequence, the best model (CF 4-4-6-1
trainlm, logsig, tansig, purelin) according to the result of training (R?
0.843) could not be validated by the test (R? 0.507). Thus, the database
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was reviewed and discussed. Discussion about characterization measurements
suggests the calculation techniques should be applied more carefully, for
instance, the band gap measurement and its correspondent transition type.
Besides, standardization is highly necessary.

The strategy for modelling revealed that the learning procedure has a
huge impact either for the training algorithm or the ANN type. A Cascade
forward backpropagation with Levenberg-Marquard algorithm has manifested
as the best learning. Thus, it should be more applied for other systems.

The main obstacle of modelling may have been originated from catalysis
reports and its empirical nature. There is neither standard nor relative error
enough for each measurement in the literature to support ANN development.
In addition, the mathematical relation between photocatalyst properties for

crystalline structure could be fulfilled with statistical data.
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Future Research

For future research, we highly suggest the following items for a better

understanding of materials properties modelling:

— Investigate more variables that can be used for modelling, either struc-
ture of the photocatalyst or from photocatalysis process, such as mor-
phology and synthesis method, respectively, aiming to obtain the best

scenario for photocatalysis operation.

— Perform a statistical report in the next experiments and measurements,
such as standard error and covariance, aiming to improve the database

for prediction.

— Apply the recommendations of DRS measurement, paying attention to

the calculation methods according to the transition type involved.
— Promote debates about standard characterization techniques.

— Try another modelling technique, as Neurofuzzy, or Radial Basis Func-
tions ANN.

— Adjust the training algorithm, e. g. with Particle Swarm Optimization
— Perform the experimental report through a Design of Experiments.

— Apply the neural models to validate the experimental results.
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Figure 8.1: Data from Figure 1.1: articles from Scopus 2015-2019 with ANN,
photocatalysis and engineers.
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Figure 8.2: Data from Figure 1.1 (continued).
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Figure 8.3: Data from Figure 1.1 (continued).
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Figure 8.4: Data from Figure 1.1 (continued).
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Figure 8.5: Data from Figure 1.1 (continued).
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Figure 8.6: Data from Figure 1.1 (continued).
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Figure 8.7: Data from Figure 1.1 (continued).
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Figure 8.8: Data from Figure 1.1 (continued).
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Figure 8.9: Data from Figure 1.1 (continued).
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Figure 8.10: Data from Figure 1.1 (continued).
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Figure 8.11: Data from Figure 1.1 (continued).
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Figure 8.12: Data from Figure 1.1 (continued).
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$ANN settings

hidden layer neurons = [4 & 8]; %Number of hidden neurons in the first layer
hln size = size(hidden layer_neurons,2);

hidden layer neurons 2 = [4 6 8]; tNumber of hidden neurons in the second layer

hln size 2 = size(hidden layer neurons 2,2);

hidden_layer neurons_3 = [4 & 8]:

$Number of hidden neurons in the third layer

hln size 3 = size(hidden layer neurons_3,2);

hidden_layer_activ_func = ["tansig"

"logsig"™]l; %Transfer functions

hlaf size = size(hidden_layer activ_func,2):

output layer neurons = 1l; %Number of hidden neurons in the output layer

output_layer_activ_func = ["tansig"

"purel

1"]: sOutput transfer functions

outf_size = size(output_layer_activ_func,2):

training algorithms = ["tra

ta_size = size

m"” "trai
(training algorithms,2z);

tData identification: Group

array = "BlockB_GroupSL

M
u

load('train
load('test_data.dat"); N = N';

ng_data.dat'); M = M';

entrada = M(1:4,:):

gaida = M(5,:)
in = N(l:4,:);
out = N(S,:);

woss”

"tr

br"]; $Training algorithm

[lfor i = l:ta size %For each training algorithm

] for j1 = l:hlaf size %For each activation function layer 1
[[] for jz = l:nlaf size %For each activation function laver 2
[ for j3 = 1l:hlaf size %For each activation function layer 3
[ for w = lioutf size %For each output function

= for k = 1l:hln size %For esach hiden layer 1 topology

[-] for z1 = 1l:hln size 2 %For esach hiden layer 2 topology

Figure 8.13: Matlab code implementation for ANN development.

setdemorandstream(4) ; fssed

hidden layer neurons 3(z2),output_layer neurons],{hidden layer activ_ func(jl),

BNN TRATNING
[entradan, minentrada, maxentrada, saidan, minsaida, maxsaida]=premnmx (entrada, saida) ;
FLNN type
net = newcf (minmax (entradan(:,:)), [hidden layer neurons(k),hidden layer neurons_2(zl),

- for z2 = 1:hln size 3 %For each hiden layer 3 topology

__________________ z

120

hidden layer activ_func(j2),hidden layer activ func(j3),ocutput_ layer activ func(w)},

training algorithms(i));

Y = sim(net,entradan(:,:));
¥ = postmnmx (Y, minsaida, maxsaida);

net.trainParam.epochs = 3000; Zsteps
net.trainParam.goal = le-4; fconvergence
net.performFocn = 'sse='; Fobjective function
net.trainParam.min grad = le-4; %gradient

net = init(net):

[net,txr] = train(net,entradan(:,:),=saidan(:,:)):

fcompare with input
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63
64 Fo—— Figure —--———- %
&5 figl = figure(l):
66 [, b, r]=postreg(X(1l,:),saida(l,:)):
67 figz = figure(2)

3 sl=subplot(2,3,1):
9 copyob] (allchild(get (figl, enthxesz')),sl):
70 title (get (get (get (figl, " 1thxes'), "title"), "S5t
71 xlabel (get (get (get (figl, 'CurrenthAxes'), "xlakel"), "String"))
72 ylabel (get (get (get (figl, * renthAxes'), "ylabel"), 'String'))
73 legend (get (get (get (figl, ' nthAxes'), 'legend'), 'String'), 'Location', "northwest')
T4 close (figure (1))
75 subplot (2,3, [2 3]);
76 plot(saida(l,:),"or")
77 hold on

g plot(X(1,:),'-k"):
79 xlabel ('Sample’', 'Font3Size',16);
80 ylabel ('Brand', 'FontSize',16) :
81 legend ('Band gap observed', 'Band gap predicted', 'Location’', "southeast'):
82 title('Tz )
83 hold off
g4
85 T Saving the network —-———- £
i1 network name = array + '_'+hidden layer activ func(jl)+'_ '+hidden layer neurons (k)i
87 '_'+hidden_layer_activ_func(j2)+'_'+hidden_layer_neurons_2(zl)+'_'+
28 hidden layer activ_func(j3)+'_'+hidden layer neurons_3(z2)+'_'#
29 output layer activ_func(w)+'_'toutput layer neurons;
a0 save ('ANNs/'+network name, 'net');
al
a2 Fo—m ANN TEST —————————————————— %
93 [inn] = tramnmx (in,minentrada,maxentrada);
94 ¥t = sim(net,inn(:,:)):
a5 Xt = postmnmx (Yt,minsaida,maxsaida);

96

a7 Fo—— Figure (cont) --———- %

-] figure (2)

99 subplot (2,3, [5 €]):

100 plot {out (1,:),'ox'")

101 hold on

102 plot (Xt (l,:), '-k');

103 xlabel ('Sample’, 'FontS5ize',15):

104 vlabel ('Brand', 'FontSize',158);

105 legend {'oksexved', 'predicted’, 'Location', 'southeast');

106 colordef white;

107 title ('Test')

108 hold off

109 fig3 = figure(3):

110 [a,z,f]=postreg (Xt (l,:),out(l,:));

111 figure (2)

112 s2=subplot (2,3,4):

113 copyobj (allchild (get (fig3, ' enthxes')),s2);

114 title (get (get (get (fig3, 'Currentixes'), 'title'), 'String'))
115 xlabel (get (get (get (fig3 thxes'), 'xlabkel’),’ g'))
116 yvlabel (get (get (get (fig3, ' thxes'), 'yvlakel'), ' g'))
117 legend (get (get (get (£ig3, 'C ntAxzes'), 'legend'), ' g'), 'Locati '
118 close (figure (3))

119

120 R Rt T Saving the Figure - -————-——o—oeeeu—o %
121 fig2 name = network name;

122 saveas (fig2,fullfile('Results/',fig2 name), 'fig');

123 close (fig2):

124

125 e ANN TEST -————————————————— %

126 results name = "Results/Results Group'+network name;

127 hidden weights = net.IW{l};

128 output_weights = net.LW{2}:

129 hidden bias = net.b{l};

130 output_bias = net.b{2};

131 perf SSE = tr.best_perf;

132

133 r2train = r"2;

134 r2test = £"2;

135

136 save (results_name, 'perf 5SE', 'hidden weigh

137 |'autput bias','r2train', 'ritest');

138

135 end

140 end

141 end

142 end

143 end

144 end

145 end

146 end

Figure 8.14: Matlab code implementation for ANN development (continued).
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ans =

3.4717 -
-3.7658
-3.0654
-2.4070
1.0441
4.4503
-2.4709

ans =

4.6567 -

ans =

ans =

122

10.9524 0.8855 -3.7521
-0.8183 -1.4573 1.8097

-13.3769 -1.7112 -2.32389

-4.4112 0.3502 -4.7944
1.7771 -0.4585 1.6033
4.9527 1.8967 -1.4289
4.2012 -0.6420 2.0861

53.8991 -6.6189 7.6299 36.0942 -35.5902 25.83k

-13.2907
3.6274
-9.3527
-2.0751
-0.5892
-0.3771
6.877

32.1892

Figure 8.15: Weights and Biases of Block A with the smallest database ANN-

FF 4-7-1.
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