XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES Autor: RODRIGO CANTO CORBELLI
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
ALVARO DE LIMA VEIGA FILHO - COORIENTADOR
Nº do Conteudo: 47988
Catalogação: 11/05/2020 Liberação: 11/05/2020 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.47988
Resumo:
Título: INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES Autor: RODRIGO CANTO CORBELLI
ALVARO DE LIMA VEIGA FILHO - COORIENTADOR
Nº do Conteudo: 47988
Catalogação: 11/05/2020 Liberação: 11/05/2020 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.47988
Resumo:
A previsão de movimentos futuros para o mercado de ações é conhecidamente uma tarefa difícil de ser satisfatoriamente realizada. Além disso, a
própria possibilidade desta previsão é constantemente questionada na literatura. O estudo presente investiga se essa dificuldade poderia ser amenizada
escolhendo janelas específicas de tempo, onde uma dinâmica mais evidente
prevaleça, e se a identificação desses períodos pode ser aprendida através de
dados passados. Um framework é proposto para tratar desses problemas.
Esse framework é nomeado de Predictability Crawler (P-Craw). A proposta
usa rotinas de otimização como o Particle Swarm Optimization (PSO) e
Algorítimos Genéticos (GA) para selecionar sub-conjuntos de dados históricos
onde modelos de aprendizado estatístico possam ser treinados de forma mais
eficiente.
Para validar a acurácia do método, este é testado em dois diferentes conjuntos
de dados. Primeiro, simulações com diferentes níveis de ruído são geradas.
Nelas, o P-Craw é capaz de identificar os subconjuntos ótimos em cenários
com 20 por cento a 100 por cento de amostras previsíveis. Por fim, dados de transações intradiárias da bolsa de valores brasileira (BOVESPA) são agregados e processados
uma matrix de variáveis de entrada e um vetor de previsões. Quando o
P-Craw é testado contra o método usual de treinar os modelos em todo
conjunto histórico disponível nos dados da BOVESPA, o framework é capaz de
aumentar significativamente o número de vezes que o modelo acerta a direção
do movimento do preço das ações, enquanto consegue chegar a reduzir em até
19 por cento o erro médio absoluto da tarefa.
Descrição | Arquivo |
NA ÍNTEGRA |