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Abstract

Corbelli, Rodrigo Canto; Vellasco, Marley Maria Bernardes Rebuzzi (Ad-
visor); Veiga Filho, Álvaro de Lima (Co-Advisor). Investigating Opti-
mal Regimes for Prediction in the Stock Market. Rio de Janeiro,
2019. 73p. Dissertação de Mestrado – Departamento de Engenharia
Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Predicting stock movements in the market its known to be an extremely
difficult task. More than that, the predictability of the series itself is a
controversial matter. The present study investigates if this difficulty could
be alleviated by choosing specific windows of time where a more structured
dynamic prevails, and whether the identification of those moments could be
learned from past data. In order to do that, a novel framework is proposed.
This framework is called the Predictability Crawler (P-Craw). It uses opti-
mizations routines such as the Particle Swarm Optimization (PSO) or Genetic
Algorithms (GA) to select subsets of historical data where statistical learning
algorithms can be more efficiently trained.
To access the accuracy of the method, it is tested against two different datasets.
First, simulated data with varying percentage of noise is generated and used. In
the simulations, The P-Craw is able to reliably identify the optimal subsets in
scenarios ranging from 20% to 100% of predictable samples in the data. Second,
intraday data from the Brazilian stocks exchange (BOVESPA) is collected
and aggregated into feature and target matrices. When benchmarked against
training with the whole samples in the BOVESPA data, the framework is able
to significantly raise the correct directional changes of the trained models while
reducing the Mean Absolute Error in up to 19%.

Keywords
Stock Market; Predictability; Genetic Algorithms. Particle Swarm

Optimization. Time Series.
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Resumo

Corbelli, Rodrigo Canto; Vellasco, Marley Maria Bernardes Rebuzzi;
Veiga Filho, Álvaro de Lima. Investigando Regimes Ótimos para
Previsão no Mercado de Ações. Rio de Janeiro, 2019. 73p. Disser-
tação de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

A previsão de movimentos futuros para o mercado de ações é conheci-
damente uma tarefa difícil de ser satisfatoriamente realizada. Além disso, a
própria possibilidade desta previsão é constantemente questionada na litera-
tura. O estudo presente investiga se essa dificuldade poderia ser amenizada
escolhendo janelas específicas de tempo, onde uma dinâmica mais evidente
prevaleça, e se a identificação desses períodos pode ser aprendida através de
dados passados. Um framework é proposto para tratar desses problemas.
Esse framework é nomeado de Predictability Crawler (P-Craw). A proposta
usa rotinas de otimização como o Particle Swarm Optimization (PSO) e
Algorítimos Genéticos (GA) para selecionar sub-conjuntos de dados históricos
onde modelos de aprendizado estatístico possam ser treinados de forma mais
eficiente.
Para validar a acurácia do método, este é testado em dois diferentes conjuntos
de dados. Primeiro, simulações com diferentes níveis de ruído são geradas.
Nelas, o P-Craw é capaz de identificar os subconjuntos ótimos em cenários
com 20% a 100% de amostras previsíveis. Por fim, dados de transações intra-
diárias da bolsa de valores brasileira (BOVESPA) são agregados e processados
uma matrix de variáveis de entrada e um vetor de previsões. Quando o
P-Craw é testado contra o método usual de treinar os modelos em todo
conjunto histórico disponível nos dados da BOVESPA, o framework é capaz de
aumentar significativamente o número de vezes que o modelo acerta a direção
do movimento do preço das ações, enquanto consegue chegar a reduzir em até
19% o erro médio absoluto da tarefa.

Palavras-chave
Mercado de Ações; Previsibilidade; Algorítimos Genéticos. PSO.

Séries Temporais.
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1
Introduction

In the financial market, forecasting of price series means financial profit,
so the matter of how to accurately compute those forecasts is always on
the spotlight. In order to tackle this challenge, two schools of thought are
generally invoked: Technical and Fundamentalist [1, 2, 3]. To the Fundamental
school of analysis, the intrinsic value of a stock paper is the crucial factor,
therefore this school pays attention to indicators that go from the financial
health of the company to government regulation policies on the sector and
macroeconomic data. The Technical branch, on the other hand, looks only
at previous movements in price charts and graphics to guide their beliefs
concerning future behavior.

On the antagonist side to both approaches lies the Efficient Market
Hypothesis [4]. The hypothesis states that all the information regarding an
asset is already incorporated in it’s price at any given time, therefore it
is impossible to consistently beat the market. Despite of this conjecture, in
recent literature machine learning techniques are constantly evoked to tackle
the challenge of market forecasting using both technical and fundamental
data [5, 6, 7, 8, 9, 10]. There is no clear winner is this task, and the most
difficult benchmark to beat remains the random walk model [11]. To add
to the discussion, a number of studies shows that the mere publication of
market forecast solutions degrades their performance [12, 13, 14]. The resulting
scenario is then one where trained algorithms can hardly beat the most simple
model, and even when they do, can lose their predictive power over time. To
reconcile these facts a more recent conjecture, the Adaptive Market Hypothesis,
speculates a dynamic evolution of efficiency [15].

With this evolution it is possible that a specific strategy or model work
at some time-frames, but can perceive only noise at others. This reality can be
a problem for the regular supervised learning procedures [16] used in machine
learning. Namely, the use of all available data in training can incorporate noisy
samples that don’t offer any structure to be learned. Those samples can worsen
the final performance instead of helping. Noisy observations can degrade not
only the training stage, but also mask the performance when used in out-of-
sample evaluation. To study this issue, different proxies for market efficiency
have been proposed [17, 18, 19, 20, 21] and enhancement has been uncovered
when training and evaluation happen in respect to a selected "inefficient" sub-
set of data [17, 19]. The different proxies proposed included Hurst’s Exponents,
entropy measures, different hypothesis test’s p-values and linear regression
coefficients values.

Instead of focusing on a specific proxy, this work aims at proposing
a general framework to address the selection of predictable samples. This
framework is called the Predictability Crawler (P-Craw). The P-Craw is
meant to be an additional step to be performed when training a statistical
learning model. This step filters which data points to be used in the training
and evaluation of the model, removing noisy observations that can degrade
performance.
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1.1
Objective

The objective of the study is to propose the P-Craw framework for
forecasting in regimes where not all observations are predictable. The proposed
framework is able to use past data to learn how to identify predictable
moments. It also uses the learned structure to select when to make a prediction
or not in a new out-of-sample observation. In order for the P-Craw to be valid,
it is also a necessary goal to assert it’s capability of generating significant
enhancements when used.

1.2
Methodology

To assert that the objective was fulfilled, the proposed methodology is
composed of two parts:

1. A simulated series is created with both predictable and unpredictable
samples, and it is used as a reference for the model. The first part of the
study tests the P-Craw in those scenarios to assert if it can correctly
discover the real dynamics of the simulation without any privileged
information.

2. A real dataset is used: The intraday trade records for the brazilian stock
market data. A feature representation is proposed to the price series.
The data is split into training and test sets, and a statistical learning
model is used to predict future behavior in two ways. In the first way
the model is trained using the whole training set, and the error metrics
are computed with respect to the whole test set as well. In the second
way, the proposed framework is used and the model is trained only in
the selected samples in the training set, and is evaluated only at the
selected samples at the test set. The second part should then confirm if
the P-Crawl brings a significant improvement in the error metric when
compared to the usual approach.

1.3
Contribution

The main contribution of the study is the P-Crawl, acting as a new
method that can be used both to train and evaluate machine learning and
statistical models in regimes of changing predictability.

The work also contributes to the discussion regarding market efficiency.
The existence of regimes with varying performance when trained in different
time-frames corroborates with the evolution of efficiency proposed by the
Adaptive Market Hypothesis. Therefore, the results discussed help to unveil
evidence in favor of this conjecture.

Another contribution relates to the comparison between Technical Indi-
cators. The relative importance of those in the prediction task is discussed in
both the whole data available and the regimes selected for prediction.
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1.4
Organization

The present document is organized in the following manner:

– Chapter 2 discusses the Efficient and Adaptive Market Hypothesis, as
well as their consequences. It covers previous studies concerning regime
switches in the market, exploring both the contributions given and where
the ideas presented at them could be improved.

– Chapter 3 presents the P-Craw framework, describing each building block
and the implementations used in the present context.

– Chapter 4 presents the results for both parts of the described method-
ology, discussing the conclusions in both in the simulation study and in
the real-life case.

– Chapter 5 summarizes the findings and conclusions of the study and
enumerates the challenges left open for future research.
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2
Previous Work

2.1
Market Efficiency

In his seminal paper [4] Fama introduced the Efficient Market Hypothesis
(EMH). The hypothesis states that price series innovations on the market fol-
low a random walk pattern, where each new price adjustment is independent
of previous information. In the argument, the fierce competition for profits
assures that any new knowledge is immediately incorporated. With the infor-
mation already reflected in price, is then impossible for a trader to create a
strategy that consistently beats the market. This line of thought is put in a
nutshell in the sentence "Prices fully reflect all available information".

Not all studies agree with this statement though. As a matter of fact,
in [22] it is argued that a perfectly efficient market would not be plausible at
all. The reason is that there are costs inherent to information gathering and
arbitrage, and if there is no excess return to be made in exchange for this
cost there would be little reason for traders to trade, causing the market to
eventually collapse. In this context, the payoff of information gathering would
be directly linked to the inefficiency, and a market equilibrium would arise
from players paying less attention to saturated markets, lowering those markets
efficiency levels, and focusing on new assets, raising those assets efficiency.

More Recently, Lo [15] proposed a new paradigm, the Adaptive Market
Hypothesis (AMH). In the AMH, each agent is viewed as a specimen with
constrained knowledge acquired through past experiences. Those agents would
then not optimize their utility function, but rather find the best solution
constrained to their current beliefs. In this context, the equilibrium is part
of an evolutionary game between those agents fighting for resources (economic
gains), learning and shifting their preferences towards different financial assets
and arbitrage strategies.

This evolution would entail different efficiencies in different markets at
different times in respect to different strategies, and thus allows for profitable
opportunities to exist from time to time. The theory has gained force in light
of evidence such as changing correlation coefficients over time in price series
and trading techniques that showed vanishing performance once they were
published in academic studies [13].

2.2
Hamilton and Engel Markov Switching Model

The first line of studies worth mentioning is not directly related to market
inefficiency, but with the more general idea of regime-switching. This idea has
a milestone at the work of Hamilton and Engel [23], whose objective was to
correctly identify regimes of price trends. A simple Markov Chain model was
proposed to address the identification of those trends in the dollar exchange
rate series, as depicted in Fig. 2.1.
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Figure 2.1: Example of trend identification in price series

In their proposal, it is postulated the existence of a latent variable S,
which can take the values 1 or 2. The conditional distribution of returns is
then N(µ1, σ1) or N(µ2, σ2) depending on the current value of S. The random
variable S follows a first-order Markov process with transition matrix as in 2-1.[

p11 1− p22
1− p11 p22

]
St = St+1 (2-1)

The system is entirely described by the vector Θ =
(µ1, µ2, σ1, σ2, p11, p22). This way, the model could capture up-trends in a
regime with a positive mean, while downtrends would signal a negative ten-
dency. The model also allows for asymmetry in trend probabilities, being able
to model brief but sharp regimes for price appreciation while depicting losses
in a subtle but more consistent manner. Inference on these parameters can
be made using either the Hamilton Filter as originally proposed [23], or the
Baum-Welch algorithm [24]. However, as pointed out later by Engel [25], this
model fails to beat the random-walk benchmark in out-of-sample observations,
despite showing some evidence in superior prediction of price change direction.

2.3
Regime Switching for Efficiency Identification

Regime switching models have also been used to model market efficiency.
One important example is [26], where the dynamic of price changes at the dollar
exchange rate series after the reveal of new information at instant τ is studied.
In the author formulation, the exchange rate et is proportional to a variable zt
and the expected value at instant t of the future variation ∆et+1. The variable
zt is composed of a random noise ϑt plus a drift term µ̃ that changes after the
information is revealed. Eq. 2-2 summarizes the process.
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et = αzt + γEt[∆et+1]

zt = µ̃+ ϑt, with
{
µ̃ = µ0, for t < τ
µ̃ = µ1, for t ≥ τ

ϑt ∼ N(0, σ2)

(2-2)

The agents can be skeptical about the information. For example, if it
is an announcement of a new governmental policy, there can be doubt on
whether this policy will be indeed effective or not. The question is then
how they proceed in their believes. Once the information is made public, the
participants know the market can be in either one of two scenarios: P0, where
µ̃ = µ0 or P1, where µ̃ = µ1. It is proposed that they update their belief at
each new observation according to the Bayes equation [16]. If the information
consolidates, the series is expected to reach a new equilibrium point. If the
market refutes the effectiveness of the announcement, it will return to the
previous state and the exchange-rate series will exhibit a bubble pattern. The
goal is then, as it usually is in technical analysis, to derive a sign prediction of
future market movements. At any given t > τ , is easy to see that

Et[∆et+1] > 0, iff 1
t− τ + 1

t∑
j=τ

zt >
µ0 + µ1

2 (2-3)

Which is just saying that P1 is more likely than P0 if the mean of zt
following the new information is closer to µ1 than it is than µ0. In terms of the
observable exchange-rate et, Eq. 2-3 can be written as

Eτ+κ[∆eτ+κ+1] > 0, iff 1
κ+ 1

τ+κ∑
j=τ

et >
Et[et|µ̃ = µ0] + Et[et|µ̃ = µ1]

2 (2-4)

The problem is that in practice the values µ0 and µ1 are not known.
A possible workaround can be used if one notices that, should the expected
value of observations increase after instant τ , the mean of the series computed
only after this period would be greater than a mean estimator using previous
information as well. If the probability assigned to the regime shift is close to
one and δ time steps have elapsed since the announcement, the average of the
last ρ = 2δ observations compared to the last δ would be an unbiased estimator
[26]. If the market skepticism about the information makes P1 small though it
would be necessary to use a smaller ρ in order to have possibly more samples
of P1 and account for the effects of the prior beliefs. Either way, this can be
expressed as

Eτ+κ[∆eτ+κ+1] > 0, iff 1
κ+ 1

τ+κ∑
j=τ

et >
1
ρ

τ+κ∑
j=τ+κ−ρ

et (2-5)

Equation 2-5 can be recognized by many as the Moving Average rule of
technical analysis [27]. In practice, the time τ at which new information might
have been incorporated is usually not known, what makes it impossible to
compute accurately values for κ and ρ (respectively the windows for the short-
term and long term averages). Although this may lead to a biased estimator,
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as long as ρ is greater than κ it will be consistent, and the signal can be used
to alarm if a regime switch has occurred.

The importance of this study to the present context is not only that it
derives a technical indicator from a regime switch perspective, but that this
indicator is only meaningful in specific situations. The derivation above was
reasoned in light of an actual incorporation of information leading to a change
in market equilibrium, and so would be unwise to be used at every arbitrary
moment.

To address this specification, the modelling of Hamilton and Engel is
evoked and the exchange rate is once again assumed to be directly influenced
by a latent variable St, which evolves according to 2-1. At state S0, identified
as having higher variance, the market is assumed to be in a more informa-
tion efficient regime where technical analysis would not be appropriate, and
a signal based on fundamental ideas is used instead. In state S1, a moment
of inefficiency is detected as the market supposedly tries to incorporate new
information and the technical indicator derived in 2-5 is used. In their exper-
imental setup, it is found that the technical indicator influence is statistically
significant in the assigned regimes.

Figure 2.2: Example usage of the Moving Average indicator

2.4
Discussion

In the previous session, all the models incorporated the idea of regime-
switching. Some with a more simplistic modelling, and some with more complex
approaches. A possible pitfall in this line of research is the necessity of having
to incorporate the non predictable time frames in the model. To the extent
of this discussion, it is fruitful to dive into the concept of what would be
a non-predictable window. As stated in [4], in a practical definition for the
market trader, a series has independent increments as long as he/she cannot
use past information to increase expected gains. Daily Futures price series, for
example, show strong evidence of conditional heteroskedasticity and rejects
the BDS test for the independence hypothesis [28], but it is not trivial how to
use this information to create monetary gains.
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Financial gains are related to knowledge regarding the direction and
value of price movements. If the error of the predicted values are smaller
than the unconditional uncertainty, or if the direction of price movements
can be inferred with greater precision, the data can be considered to have
some degree of predictability. In the present study, a predictable series is one
where a model can be trained on past data to decrease uncertainty about
future movements. This definition describes predictability of a series in regard
to a specific statistical model. It can be the case that the series is considered
predictable in respect to one model but unpredictable to another one.

In this context, unpredictability is not necessarily encompassed by one
regime, but rather in every regime not explainable by the current model. In
[26], unpredictable regimes (or in the context, regimes only predictable through
fundamental analysis) were supposed to be inferred through the variance
of normal innovations. Notwithstanding, it can be the case that periods of
unpredictability encompasses not only different volatilities, but different shock
distributions, and even a variety of other high-orders non-linear dependencies.
Overall, detecting unpredictable regimes by assuming inherent characteristics
of them might be problematic.

On the subject of Tree-based methods, one could argue that an algorithm
such as Random Forests is capable of dealing with uncertainty in a natural
way. The tress in the forest could just output the mean target value whenever
a specific pattern could not be assigned to a sample point. Notwithstanding, it
would be not trivial to assert when a mean prediction was assigned because of
this uncertainty or because a predictable regime actually forecasted it. Even
if this problem is solved, the model still has complications. In the trees, the
top nodes would be responsible for the regime identification, while the lower
hierarchy would do the predictions for each regime. As previously discussed,
growing deep trees might lead to over-fitted models, so in practice very few
splits (or none at all) would be in charge of each task. The problems of regime
identification and regime forecasting are complex enough on their own, and so
it would be more promising to address them in a separate way.

Models such as Neural-Networks have a high potential of adaptability
and learning of difficult multi-step problems, and have been used before in
price series prediction [29, 30, 31, 6] . But as already pointed, efficiency in the
market can happen in more than one configuration, and a flexible algorithm
could be tempted to "learn the noise" instead of discovering truly predictable
samples. The signal-to-noise ratio in the training sample could worsen the bias-
variance trade-off present in statistical learning problems [32], making a high
variance algorithm even more prone to over-fitting. It would be ideal then if
those models could be trained only at the inefficient periods of the market.

The question then is how to create a procedure that:

1. Does not make strong assumptions on the structure of efficient time-
frames.

2. Separate the tasks of regime classification and regime forecasting into
distinct ones

3. Train the final model only at the predictable subset of the data.
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An approach in this direction can be found at [17]. In this study, the
authors use the Hurst Exponent as a proxy for predictability by computing a
rolling window estimate and monitoring the evolution of the estimator. A Hurst
Exponent far from 0.5 indicates a dependence structure on the time-series. An
exponent near 0 represents a mean-reverting pattern, and value near 1 indicates
a trend-following behaviour. In [17] the initial data was broken into two groups:
one with exponents greater than .65 and one with exponent values between .54
and .55. For each one of those two groups, a split in training, validation and
test set was made. Then, a Neural Network was trained on the training set,
with the validation set used to early-stop the back-propagation algorithm, and
the performance is evaluated on the test set. After this, an unpaired Student’s
t test was performed on the null hypothesis that there was no difference in the
performance, which was rejected on a p-value of 7.0290 ∗ 10−10, showing very
strong evidence of enhancement in performance when training on the group
with the greater exponent.

The example in [17] was able to conform to items 2 and 3 of the list
of conditions, but still made an assumption on the structure of the efficient
time frames. Namely, that those periods would have a specific range of Hurst
Exponents. It is, of course, a reasonable assumption, but one might be tempted
to explore what others dependency indicators might have been used to classify
those intervals. As a matter of fact, in other studies the predictability of
financial series is analyzed through different metrics, ranging from information
theory measures to regression coefficients [18, 19, 21].
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P-Craw

This section presents the P-Craw framework, describing each part of the
methodology in detail and presenting the implementation used in the results
section. First, a general view is explained, with an in-depth approach being
carried for each one of the building blocks afterwards.

3.1
General Framework

The P-Craw is defined to adapt the training of a statistical model to a
situation where some data points might not be beneficial to the process. The
most important part then is a structure capable of selecting a subset of the
available data free of those points, representing only the predicate samples in
the dataset.

A selector S is the building block responsible for this task. Once the best
subset P is defined, it is used in two different training tasks. The first is to fit a
prediction modelM . This one uses only the samples in the selected subset. The
second is to train a classifier C, responsible to label out-of-sample observations
into predictable or unpredictable ones. This task uses all the available samples,
with the target to be learned being if they are present in the selected subset
or not. The idea is that by training to reproduce the classification of the
selected samples, this classifier will learn the structure that differentiates the
data present in it from the rest.

The process so far constitutes the training phase of the framework. To
test the performance of the method, the P-Craw turns the out-of-sample
observations into features and feed them to the classifier. The vector is then
selected as predictable or not. In the positive case, the trained forecaster M
is used to perform the actual prediction. If the classification returns negative,
the process discards that samples, moving to analyze the next one. Fig. 3.1
depicts the process, and the following sections describe each building block in
details.

Figure 3.1: Proposed Architecture
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3.2
Selector

Suppose the trader is given a set of historical data D. The task is to
find the subset P? in the set of all possible subsets S of D that represents the
"most predictable" time frames available. Implicit in this task is the necessity to
compare two possible subsets and be able to say which one better represents
inefficient periods. This calls for a function F : S ∈ D 7→ R, which can be
used to construct a ranking structure among possible sets. With this function
defined, the problem now becomes an optimization procedure, in which one
must find:

P? = argmax
S∈D

F (S) (3-1)

This function needs to score subsets in respect to their ability to "be
explained" by a statistical model. In order to carry that, the time series is
represented as feature and target matrices. The scoring process must be paired
with a specific model to be trained on the given subset, and the outcome of
this training is used to compute F . Once this scoring mechanism is settled, an
optimizer search amongst the space of possible subsets to find the solution of
Eq. 3-1. Fig. 3.2 illustrates the process.

Figure 3.2: Optimization Procedure

The process is composed of three main entities. The statistical model
chosen, the scoring function F , and the optimization algorithm. This subsec-
tion explains the specifics of the model and the function F . The optimization
procedure is the main engine of the framework and so deserves a subsection of
it’s own.
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3.2.1
Statistical Model

As previously mentioned, the whole point of the selector is finding a
subset of data more suitable to be predicted. In order to verify this property
in a given series, a statistical model has to be defined. As an example, lets use
the simple case of a linear regression.

The first step is to create the feature representation of the time series.
Instead of working with the raw values, a common approach is to use the log
return series, computed as

rt = log st
st−1

(3-2)

Where st is the value for the time-series at instant t. The features to be
used at instant t can be, for instance, the last n observed returns. The target
to be predicted can be the next return rt+1. Once the series is processed in
this features/target form, the optimization procedure can start. At it, in each
iteration different candidate subsets are selected according to the optimization
procedure. The selected data is then used to train the statistical model, which
in turn is used to compute the score F of the given candidate. Fig. 3.3 displays
the example with n = 15.

Figure 3.3: Example of Model Setup

In the case of the statistical model being a simple linear regression using
the described features, the model to be trained would be as in Eq. 3-3, where
the next return rt+1 is a sum of previous returns with appropriate coefficients
plus a constant term β. The training can also include pre-processing schemes,
such as feature selection. For example, the LASSO algorithm [16] can be used
to choose a subset of features to include in the regression.

rt+1 = β +
n∑
i=1

αirt−i (3-3)

Once the model has been fitted for a particular subset, it can be used in
the scoring function evaluation, described next.
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3.2.2
The Fitness Function

The scoring function has the purpose of quantifying how accurately the
candidate subset can be represented by the chosen statistical model. To be
consistent with the naming convention in the optimization literature, hereafter
it will be referred to as the fitness function.

With the statistical model trained at a specific subset, an error metric
is used to access how much the model could adjust to the trained data. The
Mean Absolute Scaled Error (MASE) error metric is selected and computed
according to 3-4.

MASE(y, ŷ) =
1
n

∑n
i=0 |yi − ŷi|

1
n

∑n
i=0 |yi|

(3-4)

Where yi is the target and ŷi is the model’s prediction. The MASE is
chosen because of two properties. First, as it uses absolute differences it is less
sensible to outliers than possible alternatives such as the Mean Squared Error
(MSE) [16]. Second, as it is normalized by the absolute value of the returns, it
relates directly with how much uncertainty the model was able to explain.

If the chosen subset was used to both train the model and compute
the MASE, this could be a problem. The model could achieve a low error at
the specific subset while not being able to correctly represent out-of-samples
observations. To alleviate this risk, the model evaluation in each subset is
computed using a cross-validation scheme [16]. In it, each subset is divided in
3 parts, two are used for training, while the last one is used to compute the
metric. This procedure is repeated until each fold had the opportunity to be
used in the evaluation phase, and the values are averaged. The resulting metric
is referred to as MASECV , and Fig. 3.4 helps to illustrate the process.

Figure 3.4: Computation of MASECV

Using the MASECV directly as a fitness score might lead the optimiza-
tion to search a point where the model can learn correctly, but it does not en-
courage the mechanism to explore further regions and find all the predictable
samples. Without that, the framework can discard a valuable number of "good"
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intervals. In order to avoid this, a measure of subset size is incorporated. The
chosen measure is the proportion of the size of subset P in respect to the whole
dataset D, |P||D| . This choice not only has the same order of magnitude as the
MASE, but also ensures a metric unrelated to that particular dataset size. The
weight of this new factor influences a lot on the results, and two versions are
proposed in Eqs. 3-5 & 3-6.

Fexploit(P,D) = (1−MASECV ) + 0.1 ∗ |P|
|D|

(3-5)

Fexplore(P,D) = (1−MASECV ) + 0.3 ∗ |P|
|D|

(3-6)

The constant 1 in both definitions makes no practical difference, being
present only to bring some interpretability to the values. Namely, a positive
value in the first term of both functions signify a model capable of achieving a
MASE smaller than 1, revealing enhancement over the unconditional absolute
values of the series. The equations differ in the constant multiplying the |P||D|
term. The 0.1 and 0.3 constants where chosen based on the experimentation
of a range of values between 0 and 1, to bring different properties to the
optimization procedure. Eq. 3-5 assigns a lighter weight to |P||D| , which influences
the framework to focus more on good solutions than on exploring new ones.
Eq. 3-6 gives three times more importance to the same term, favoring the
exploration phase in the optimization procedure. For this reason, they are
respectively named Fexploit and Fexplore. Both equations will be further explored
in the Results section with aid from a simulation study.

Besides the mathematical representation, the definition of the fitness
function also needs a minimum number of samples n in the chosen subset.
This restriction is obvious, as an arbitrarily small subset would be unfitted
to be used on the training of a statistical model. If a model with less than
n samples is evaluated, it is assigned the smallest value possible, so that any
interval with a number of samples greater than n is preferred over it.

3.3
Optimization Procedure

Gathering what was exposed, it is possible to assign fitness scores
to each possible candidate subset. The selector then proceeds to choose
which new subsets to evaluate, using what it learned from the previous
choices. The optimization procedure is the algorithm responsible to make this
choice. Although generally speaking the P-Craw admits any algorithm capable
of dealing with this task, in the present context two specific methods are
implemented and discussed. They are the Genetic Algorithm (GA) and the
Particle Swarm Optimization (PSO).

Genetic Algorithms are a class of optimization procedures that take
inspiration on the dynamics of natural selection to choose how to explore the
parametric space. They first appeared in [33], and operate on a chromosome
representation of the model parameters. Although not strictly necessary,
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usually this representation is made in a binary form, such that the final
chromosome is an array of 0s and 1s.

The Particle Swarm Optimization is another algorithm capable of opti-
mizing a fitness function only by computing point values of that function. In
this method, each candidate is assigned a velocity vector together with its po-
sition, and so the solutions "wander" through the parametric topology. At each
iteration the particles update their velocities based on the best position they
have already encountered, and on the best position encountered by their neigh-
borhood. This dynamic mimics both the behavior of some group of animals
finding food and that of human behavior, where individuals proceed based in
their beliefs and that of their social group [34].

Both models are traditional, taking different approaches to the task.
They were both implemented in order to understand how the proposed
optimization problem behaves in different scenarios. In other to better adapt
those algorithms to the present context, modifications are imposed to each one.
In the GA approach, a technique named KNN-GA is presented. For the PSO,
a variant named Perturbed PSO is discussed. The next subsections present
those algorithms in more detail.

3.3.1
Genetic Algorithm (GA)

This subsection describes the chosen implementation for the regular
genetic algorithm, from the chromosome representation to the restarting
mechanism.

3.3.1.1
Chromosome Representation

The chromosome representation in binary form of a GA is a 0 and
1 encoding of the parameters. To create this representation for the present
context, the whole dataset will be joined into groups of size equal to 2% of
the number of available points N . If 2% of the size is not a integer, the group
size will be that number rounded up, and the remainder of the division of the
size by the group size will compose an offset group that starts the series. For
example, for a series with of size 320, 2% is 6.4, the group size is then 7, and
the offset is 320 mod 7 = 5. Each group will be represented by either a 0 or a
1. A 0 means the whole group is not present at the subset, while a 1 signifies
the inclusion of that group.

This 2% group size representation is chosen in order to impose some
restrictions to the way subsets are selected, and to make the number of genes
in the final chromosome well behaved. Just for the sake of visualization, Fig.
3.5 drops this restriction and represents how a series with 100 samples would be
represented with using a group size of 30. This setup is not the one described,
and is only shown here to display groups an offset without visual clutter.
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Figure 3.5: Group Chromosome Representation

3.3.1.2
Initialization

The initialization of an optimization algorithm is an important factor
in the overall performance [35]. Recall that when the fitness function was
discussed, it was stated that a minimum number of samples n for the subset had
to be defined. The initialization procedure takes this number as a parameter.
To avoid initial solutions far from the possibility of choosing all available data,
the initial sets are restrained to have the smallest number samples greater than
n possible.

Two initialization methods are tested. In the first, each individual solu-
tion is initialized independently of each other. In the second one, the process
happens sequentially. When the first individual is created, the intervals active
in it are discarded from the possible ones to be active in the next, and so on.
When all the intervals are taken, all of them become available again and the
process continues. This method was designed to ensure an initialization with
broad coverage of the parametric space.

3.3.1.3
Selection Mechanism

Regarding the selection scheme, the tournament method is implemented,
as it can be shown to have better rates of convergences than the original
proportionate selection mechanism [36] . In the tournament selection, a group
of individuals is randomly chosen to participate in a match (the number is
called the selection pressure, and is usually 2), and the candidate with the
highest value among the participants is selected. This method is then chosen
to be used in the present context along with its usual pressure value.

3.3.1.4
Crossover & Mutation

The evolution of one generation of possible solutions happens by means
of crossover between existing individuals. Every time a couple is selected for
mating, there is a probability that a crossover operation will be used to generate
two offspring from those individuals. If they are not chosen by the operator,
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they proceed unaltered to the next generation. Two distinct operators are
presented and tested in the model. In the classical Single-Point crossover, a
random index on the chromosomes vector is chosen, and the final offspring
are the parents with genes exchanged from that point on. In the Two-Point
variant, two points are chosen instead of one, and the genes are exchanged in
the interval between the two points. Fig . 3.6 illustrates both processes.

Figure 3.6: Crossover Methods

A simple implementation of the mutation method is used. If the indi-
vidual is indeed selected to mutate, each gene in the string of that solution
will have a probability (1/l) ∗ 10 of being flipped (with l being the length of
the chromosome). This provides a mutation affecting in average 10% of the
genes of the individual. This value was used to ensure a significant change in
a mutated chromosome. The probabilities for both mutation and crossover are
constant during the evolution of the algorithm, for the sake of simplicity.

3.3.1.5
Survival

In order to avoid losing the best solutions in the evolutionary process,
the survival operator carries the best individuals from one generation to the
next. The proposed form of the Genetic Algorithm uses an elitist approach,
carrying only the best individual at each step in the pool. This approach has
a positive impact on the convergence properties of the GA, making it more
likely to the algorithm to achieve the global maxima and even guarantying
asymptotic convergence in some scenarios [35].

3.3.1.6
GA with Restarting

In [37] it is proposed a technique to enhance the common GA setup.
In genetic algorithms, as with every search task, there is a trade-off between
exploration as exploitation [38]. In the early stages, the population is exploring
the search space, not paying particular attention to any specific solution. When
a promising region is found, this discovery triggers an exploitation phase, where
the exploration of new areas is compromised in favor of the further refinement
of what was learned. If the exploitation pattern is reached too early, the method
might get stuck in local maxima, not being able to find better solutions. To
avoid that, the study proposes to restart the population at everyN generations,
but keeping a portion of the original participants. This way, the knowledge
acquired would be maintained while avoiding early convergence.
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The N parameter defines how often the restarting will occur. In the
present context, the restart is set to happen at the middle of the evolutionary
process, so that the population will have equal opportunities to evolve both
before and after it. For example, if the population is allowed to evolve for 100
generations, at generation 51 it will be restarted. The idea will be implemented
in the current context in an elitist fashion, keeping only the best solution at
that generation. For the rest of the population, the restarting will discard all
the solutions and replace them with a new population created with the same
initialization method chosen for the first individuals, being either the group or
random initialization.

3.3.2
KNN-GA

This subsection presents the KNN-GA. The method is a modification on
the regular GA created with the current context in mind. The process of trying
on a different combinations of subsets, computing MASE metrics, and choosing
the best one, can lead to biased results. In fact, if one tries with enough noisy
combinations, one of them will eventually display a deceivingly predictable
pattern. One hypothesis on how to repel this possibility is to explore the
neighborhood of the solutions. If a fitness score was a product of a spurious
combination of noise, it is likely to have a sensitive response to any change
in its configuration. On the other hand, if the corresponding subset actually
contained more predictable intervals them otherwise, small changes, although
capable of interfering, are expected to be less destructive.

To explore this reasoning, the neighborhood of the candidates is incor-
porated in the score. Once all the fitness numbers are computed for the pop-
ulation, each individual’s fitness is replaced with the average of the k nearest
neighbors (itself included), where k is a parameter to be defined. The distance
is computed in the space of the chromosome representation, and the Hamming
distance is used [39], with the closest genes being the ones with the smaller
number of genes different from the chosen one.

This way, the value of a candidate solution will represent how well
is it’s surrounding area, and if a spurious result occurs in a noisy region,
it will have its survivability greatly reduced. This works in a smoothing
fashion, reducing the importance of noise and helping the optimization of the
underlying structure. This implementation will be named KNN-GA.

3.3.3
Particle Swarm Optimization (PSO)

This subsection describes the implementation used for the regular PSO.
The Particle Swarm Optimization represents the possible solutions as wander-
ing particles. At each iteration, each particle updates it’s velocity vector the
solutions explored so far. The update equation used is the same presented at
[40] as is that of Eq. 3-7.

vt+1 = wvt + U(0, cp)(pt − xt) + U(0, cg)(lt − xt) (3-7)
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Where vt is the velocity at iteration t, xt is the position at iteration t, pt
is the best know position so far by that specific particle, U(0, c) is a uniform
distribution in the range 0 and c and lt is the best know position found in the
neighborhood of that particle. The values for w, cp, and cg were defined by
experimentation, and are displayed at Eq. 3-8.

w = .5
cp = .5
cg = 1.0

(3-8)

The neighborhood of the candidate is a set of N other solutions chosen
randomly at the initialization. Each time an unsuccessful iteration occurs (one
that doesn’t raise the global maximum found so far), the network is scrambled
and a new neighborhood is assigned to every participant. The number of
neighbors was also chosen by experimentation an is defined as N = 3 in the
present work.

3.3.3.1
Position Representation

The PSO concept assumes a continuous search space, and so the binary
representation used in the GA chromosomes can not be used. To be able
to apply velocities to the representation of solutions while not diverging
drastically from what was proposed previously, the values of each gene in
the GA vector are given a new interpretation. Instead of defining whether
the whole interval will be included or not, they now characterize the chance
every sample at the interval has of being included in the subset. This way, if a
interval has a parameter of 0.5, each sample in that group has a 50% probability
if being included in the subset. Every time that particle is evaluated, this
sampling occurs to every group. This way, evaluating a particle different times
will produce different results, as different samples will arise. Fig. 3.7 displays
one possible particle for a data-set of 100 samples and a group size of 30.

Figure 3.7: PSO Particle Representation

It is important to notice the randomness associated with this represen-
tation. Each time a particle is activated, it generates a different subset and,
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of course, this property will influence the exploitation-exploration dynamics of
the algorithm. As a matter of fact, the exploration aspect will be favored. Since
the impossibility of locking in one specific solution arises, the method is more
prone to continue searching in other areas. This can cause an effect similar to
the one aimed at with the KNN-GA formulation; on average, the metric at
a given position will be influenced by a neighborhood of subsets around that
position.

3.3.3.2
Initialization

The initialization of the algorithm takes the equivalent approaches de-
scribed to the GA variant, one being aware of the whole population and one
being completely independent for each particle. In the independent approach,
each dimension in each particle is initialized by the sampling of a uniform dis-
tribution between the values 0.0 and 0.4. This range is determined to keep the
initial particles far from the solution of selecting the whole database. In the
group aware approach, as in the GA, each particle sorts a number of intervals
to have the value 1, and the other values set to 0. For the next particle, the
intervals already taken are discarded from the sampling so on. In both ap-
proaches the initial velocities of each dimension are sampled from a uniform
distribution between -1 and 1.

3.3.4
Perturbed PSO

This subsection now describes the variation proposed to the regular PSO
algorithm, enumerating the motivations and reasoning behind them. In the
context of the proposed PSO, the sampling happens every time a particle
position is evaluated. When that happens, a particle that had a value of .35
for a given interval may, for example, choose half the samples of the group to
be included in the subset. There are two ways to proceed about that. In the
first, the fitness function is computed to the sampled subset, and the algorithm
continues. In the other option, the position of the particle is altered to conform
to the current sampling. In the previous example with half the samples in the
group chosen, the value of that group would be altered from .35 to 0.5.

This way, the particle suffers a random perturbation in it’s position every
time it has it’s value computed. This perturbation ε is independent for each
coordinate, and as it arrives from the trial of n Bernoulli’s variables with
probability p of success (where n is the group size and p is the current value)
the distribution of ε is:

P(ε) =
(

n
n(ε+p)

)
pn(ε+p)(1− p)n(1−ε−p) (3-9)

The perturbed version of the PSO involves a simple modification then.
At the end of each iteration, when the positions have already been updated,
perform the sampling at that position and then perturb the particles according
to the outcome.
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Fig 3.8 shows the distribution of those perturbations as the value p in
the group varies. As it can be seen, the functions are not symmetric, and for
values near the 0 and 1 boundaries, they concentrate their probability mass in
a way to "push" to particles towards those boundaries. In this sense they make
the 0 and 1 values "sticky", making it more difficult, but not improbable, that
the particle escapes them. This can be seen as a desirable property, because it
helps to discard bad intervals and keep good ones. It also has a higher variance
when the candidate is "in doubt" (values of p near 0.5) in respect to that group,
prompting the solution to test one of the sides.

Figure 3.8: Perturbation Distribution by current value of group p

3.4
Forecaster

With the chosen subset at hand, the samples are used to train the
forecasting module in a supervised learning setup. The task is to train a
statistical model only in the set proposed by the Selector. This model doesn’t
necessarily has to be the same as the one used in the Selector’s optimization
procedure. As previously exposed, the predictability identification and series
forecasting are totally separated tasks in the P-Craw methodology.

Figure 3.9: Training of the Forecaster

Not only the model can be different, but even the feature representation
can change. The feature representation in Fig. 3.9 is not tied up to be the same
as the one in Fig. 3.3. The Forecaster has the role of predicting the movement
of the price series. This prediction can be regarding the next value, but it also
can be a classification regarding if the prices will go up or down.

In the present study, 3 models are used as Forecaster in the Results
Chapter, all of them focusing on predicting return values. In this case,
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the models used the same feature representation as the one used for the
optimization procedure of the Selector. The linear regression coupled with
the LASSO for feature selection, the Gradient Boosted Trees for regression,
and the Random Forests [16, 41].

3.5
Classifier

Once the best subset has been identified, a label is assigned to each row
of the feature matrix representing whether it is on the chosen subset or not
(in other words, if it is considered as predictable or not). This label is used
as a target for a new task. This time, supervised learning is used to train a
model capable of identifying new samples on the test phase which posses the
same dynamic as the ones in the selected subset. As in the Forecaster, the
features used don’t need to be the same used in any other building block of
the framework. Fig. 3.10 displays the training process.

Figure 3.10: Training of the Classifier

In the present context the model used to classification was the Gradient
Boosted Trees for classification [16]. For the sake of simplicity, the Classifier
used the same feature representation as the Forecaster and the Selector.
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Results

The results of the study are divided into three sections. The first
introduces the setup of a simulation constructed to study the proposed
framework. The second displays the results when the P-Crawl is tested in
the simulated data for both the PSO and GA optimization procedures, as well
as the KNN-GA and Perturbed PSO variations. The third part is a real-life
application of the method on data from Brazil’s stock market BMF&Bovespa.

4.1
Simulation Setup & Fitness Function

4.1.1
Setup

A simulated series is created o help investigate the usefulness of the pro-
posed framework. In this simulation, three different regimes are concatenated
together. The first one follows an ARIMA(1, 1, 0) process when transformed
by the logarithm function, with coefficient φ = .7 and σ = 2. The differences
∆yt of the transformed process evolve according to Eq. 4-1, where yt are the
values of the time series.

∆ log yt = φ∆ log yt−1 + εt

εt ∼ N(0, σ)
(4-1)

The other two regimes are random walks when transformed by the
logarithm function. The innovations of those regimes have mean µ = 0 and
variances σ1 = 2 and σ2 = 6 respectively. They evolve according to 4-2.

∆ log yt = εt

εt ∼ N(0, σi), i = 1, 2
(4-2)

Following the example of subsection 3.2.1, the log return of the series is
used. It is important to notice that ∆ log yt = rt, and so the returns in Eqs. 4-1
and 4-2 follow respectably a AR(1) process and a random Gaussian noise. To
create the feature representation, a vector of past returns is used using the last
15 observations. Every simulation generated has 2015 observations, creating a
feature and target representations of 2000 entries.

Before proceeding to next discussions, the concept of purity needs to be
introduced. In the current study, the purity of a dataset will be defined as
the percentage of predictable regimes present in it (AR(1) in the simulation
case). If a simulation has 300 predictable samples and 700 unpredictable ones,
it will have a purity of 30%. Subsets of a given simulation can have a different
purity and so it is important to differentiate between subset and simulation
purity. When the simulation purity is discussed, it will be referred to as total

DBD
PUC-Rio - Certificação Digital Nº 1712733/CA

DBD
PUC-Rio - Certificação Digital Nº 1712510/CA



35

purity, to emphasize its calculation regarding all the dataset. Simulations with
different total purity are generated. In each new simulation, a reference signal
is generated together with the X and Y matrices with the predictable rows
classified as 1 and the others as 0. Fig. 4.1 displays an example of a simulated
series and reference vector.

(a) Simulated Series (b) Corresponding Reference Signal

Figure 4.1: Simulation Example

4.1.2
Fitness Function

As discussed in Section 3.2, the fitness function needs to be associated
with a specific statistical model. Following the example presented is this
section, a simple linear regression is used. As mentioned, the model can pre-
process the data before training. In the simulations, a feature selection was
performed using the LASSO algorithm.

As presented in Chapter 3, the model is trained in a subset and used to
compute the fitness function. Two different forms are presented and studied
for this function, and are again displayed at Eqs. 4-3 and 4-4. The MASECV
is the MASE error metric computed by a 3-fold cross-validation. The quantity
|P|
|D| is the ratio of the subset size in respect to the whole data.

Fexploit(P,D) = (1−MASECV ) + 0.1 ∗ |P|
|D|

(4-3)

Fexplore(P,D) = (1−MASECV ) + 0.3 ∗ |P|
|D|

(4-4)

Given a fitness function and a generated simulation, it is interesting to
visualize the landscape of function on that dataset. To be able to display that,
each subset can be represented in a X and Y-axis according to their purity and
size, with the fitness function computed and encoded in the Z-axis.

It is important not to confuse the total purity with the subset purity.
The subset purity is ratio of predictable samples in the subset with the total
samples in it (it’s size), while the total purity is computed in regard to all the
data. Fig. 4.2 displays both Fexploit and Fexplore in simulations with varying
total purity, and a number of important observations can be inferred.

First, the function increases as the purity of the subset increases, which
is a desirable property. Second, the relative size term makes the function values
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Figure 4.2: Proposed Fitness Functions
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rise as the number of samples in the chosen subset increases, placing the
global maxima exactly in the subset correctly containing all of the predictable
periods. Third, function values get erratic for lower subset sizes, and can display
spurious high values at those regions, especially for low sizes with high purity.

The version Fexplore enforces the importance of covering all the pre-
dictable samples, but also raises the values of large subsets with poor purity.
There is a local maxima in the solution of picking the whole subset in all the
versions, and at the 20% and 30% mark this solution gets dangerously close
to the global maxima in Fexplore. Actually, looking at the landscape of this
function at those values, an optimization algorithm might be forced to make
a choice of whether to go to large subsets or small ones, and can get trapped
if the wrong choice is made.

This line of thought is the reason why two fitness functions were proposed.
Function Fexplore is more adequate for datasets with a high total purity, but
can dangerously benefit large and noisy intervals when it is difficult to discern
predictable patterns. Function Fexploit alleviates this effect, but gives a poor
incentive at exploring subsets with greater number of samples.

A question that naturally arises then is how to identify each case, since
in a real situation the total purity is unknown. If the images in Fig .4.2
could be plotted in a actual problem the total purity of any given dataset
could be identified, but that is not the case. The unknown part that makes
it impossible is, of course, the purity axis. Even so, the images could still be
visualized projected in the "Size" axis, a projection that is bound to carry some
information of the whole picture.

To visualize this, the point of 1000 samples in the "Size" axis, representing
subsets with half the size of the whole data, was chosen. For each simulation,
random subsets of 1000 samples were drawn and had their MASE evaluated
after being used to train the selected model (with cross-validation). The
histogram of those values were computed and compared for simulations with
different total purity, and the result is displayed in Fig 4.3.

Figure 4.3: Different Simulation Histograms

As it can be seen, simulations with different purity display very different
histograms, both concerning the mean as well as the variance of the distribu-
tion. The first key observation that can be drawn is that datasets with a high
percentage of predictable samples concerning the chosen forecasting model can
be easily identified by their ability to have MASEs significantly lower than 1.
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This might not always be the case though, as this property depends on the
portion of variance the model can explain in the predictable samples. For ex-
ample, in a real series even models trained on predictable sets may not be
able to achieve a 0.85 MASE value. The actual error metrics obtained are not
the important fact, but the possible decrease in error if different subsets are
trained.

Another important clue is found in the spread of the distribution. In
the 0% purity case, where the model can not be consistently better or worse
depending on the outcome of the sampling, the variance of the distribution
is the smallest. Although no strict test has been developed to draw formal
conclusions, Fig. 4.3 can serve as a guide in drawing preliminary hypotheses
about the data at hand. The two factors to analyse when computing the
histograms of Fig. 4.3 are the mean and spread of the distribution. Lower
means and higher spreads pointing towards high total purity cases, while the
opposite characteristics being an indicative of low total purity.

4.2
Optimization Procedure

To evaluate the performance of the P-Craw framework, the simulations
presented in the last section were used together with their reference signal.
Simulations with different total purity were used in order to have a broader
picture of the capabilities and limitations to each configuration. On a normal
evaluation of a optimization procedure, two quantities are of interest: the best
and mean fitness value of the population for each iteration. In this section,
two metrics will be added. The first is the purity for the best solution at each
generation (again, not to be misinterpreted as the total purity) and the second
is the relative size of the best solution.

The relative size is not in respect to the whole dataset, but only to
the predictable periods present in the simulation, being different from the
quantity |P|

|D| . This way, if a simulation possesses 2000 observations but only
600 predictable ones and a given subset has size 300, the relative size is 0.5.
This makes it possible to identify the optimal subset in any situation as the
one with purity and relative size of 1, regardless of the total purity and size
of the simulation. The relative size can be greater than 1, for example, if the
subset is greater than the size of the inefficient time-frames, but this is not
desired.

The purity and relative size metrics relate with the exploitation and
exploration properties of the algorithms. The purity metric at each generation
convey how effectively the method was when exploiting the signal found from
the predictable samples, but a high purity might be found in a relatively
small portion of the data. The relative size is a metric of how extensively the
algorithm explored the possible subsets. For example, if the purity is close to 1
but the relative size is significantly bellow 1, the procedure was able to achieve
a predictable solution, but not to sufficiently explore the possible subsets.

In the subsequent comparisons, every configuration will run 30 times,
and best fitness value, mean fitness value, purity and relative size will be
compared. Not only that, but their final distribution among runs and their
evolution throughout every generation will be displayed when convenient.
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Each optimization algorithm will start at an specific configuration,
described at the beginning of the tests. At each comparison, a different part of
the configuration will be studied and changed if it is beneficial to the method.
When any parameter is altered, the others remain as the previous stage unless
explicitly said otherwise.

4.2.1
Particle Swarm Optimization

For the beginning of simulations, the PSO setup uses the regular Particle
Swarm Optimization with the random initialization and 100 particles running
for 100 iterations. As mentioned in Chapter 3, It uses the update equation as
in Eq. 4-5, with values w = 0.5, cp = .5 and cg = 1.0.

vt+1 = wvt + U(0, cp)(pt − xt) + U(0, cg)(lt − xt) (4-5)

In the random initialization the position of each dimension in each
particle is initialized by a sampling of a uniform distribution between 0.0 and
0.4, while the velocities are sampled uniformly between -1 and 1. The minimum
number of samples in both the Fexploit and Fexplore functions is set to 200.

4.2.2
Perturbed PSO vs Regular PSO

The first major comparison will be between the Perturbed Version of the
PSO and the regular one. Fig. 4.4 displays the outcome for the simulation. As
is easily noted, the perturbed version was superior in every metric. Besides, it
also showed a smaller spread between the paths of each run, specially in the
purity and relative sizes curve.

Figure 4.4: PSO Evolution - Perturbed vs Regular

This can be a consequence of the "sticky edges" property of this imple-
mentation, which helps good or bad intervals to be included or discarded with
greater consistency in each generation. This version also seems to find better
values for the score function more easily, establishing superiority not only in
the exploitation of good solution, but also in exploration of good candidates.
The Perturbed version was, in average, able to output a subset with 99% of
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predictable samples, while gathering roughly 80% of all such samples available.
The final results are displayed in table 4.1.

Table 4.1: PSO - Perturbed vs Regular

As the proposed modification in the PSO algorithm showed to improve
the results, the Perturbed PSO is elected the preferred version and will be used
in the following benchmarks.

4.2.3
Initialization

The initialization scheme for the algorithm is studied next. With the
simulation setup held fixed, group initialization is performed and the results
are displayed in Fig 4.5.

Looking at the Best Values graph, the group initialization gets an average
a better solution at the first rounds. The problem, it seems, is that this initial
confidence triggers the exploitation of those solutions too early on, leading to
diverging results in each run, as it is made clear by the purity and relative
size progressions. Clusters of different paths can be noticed, referring to trials
where the algorithm bet on the larger intervals and trials where small ones were
further investigated. As previously discussed in subsection 4.1.2, it seems that
getting this choice wrong has serious consequences and is difficult to correct
later.

Figure 4.5: PSO Evolution - Random vs Group Initialization

Table 4.2: PSO - Random vs Group Initialization

The random initialization seems to be more reasonable in the PSO case,
displaying results not only more well-behaved but significantly better overall,
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as it can be seen in Table 4.2. This technique is then chosen and used on
subsequent comparisons.

4.2.3.1
Total Purity Variation and Fitness Function

The two possible fitness functions are used in the PSO context and the
results are discussed. Fig 4.6 displays the comparison at the 30% scenario.
The Fexplore version of the optimization objective lead the algorithm to pick the
whole set of possible samples. In the PSO case, this tendency is very consistent,
as it can be seen by the low dispersion between runs in the evolution of all
the metrics. The Fexploit version on the other hand showed very good results,
being able to conquer a high purity and a relative size close to one.

(a) Fexploit (b) Fexplore

Figure 4.6: 30% Purity

It is interesting to note the evolution of those metrics in Fig 4.6 (a).
While the purity starts at a lower value and steadily increases, the relative
size first goes through a peak, to then slowly decrease towards the 1.0 mark.
This reveals a specific path taken by the algorithm. It first try larger subsets,
to then steadily filter noisy observations and reduce the size of the candidates,
converging towards the optimal choice.

When the simulation is created in a 50% split between predictable and
unpredictable regimes, the results are quite different. This time, the Fexplore
version was able to find nearly all the AR1 samples, maintaining a small
number of random innovations on the chosen subsets. The function Fexploit
on the other side was efficient about choosing valid samples but found only a
fraction of those samples.
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(a) Fexploit (b) Fexplore

Figure 4.7: 50% Purity

Tables 4.3 and 4.4 consolidate the results for both the Fexploit and Fexplore
fitness functions when evaluated at different purity.

Table 4.3: PSO - Fexploit Function

Table 4.4: PSO - Fexplore Function

The PSO showed to be very effective for scenarios where the predictable
regime prevailed. For total purity of 40% or greater, the Particle Swarm
together with the Fexplore fitness function were able to correctly classify nearly
every sample on the simulations.

Figs. 4.8 and 4.9 displays the box-plots for subset purity and relative size
at each total purity configuration for functions Fexploit and Fexplore respectively.
For the Fexplore function, it is evidenced the consistency of results for total
purity above 40%. The dispersion for subsets purity is very low, with all results
being concentrated near 1, with only the 40% presenting a spread of values
decreasing at most to the the 0.70 mark. The situation is the same for the
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relative size, with all results above the 40% total purity case highly clustered
near 1, with a greater but tolerable dispersion in the 40% scenario.

On the other side, the algorithm performed poorly on the low purity
regimes. Even with the Fexploit loss function, the method chooses the whole
dataset for a 20% scenario. The Fexplore function is chosen as a more appropriate
fit for the PSO, specializing the method in high total purity situations.

(a) Purity (b) Relative Sizes

Figure 4.8: PSO - Fexploit Fitness Function Box-Plots

(a) Purity (b) Relative Sizes

Figure 4.9: PSO - Fexplore Fitness Function Box-Plots

4.2.4
Genetic Algorithm (GA)

The Genetic Algorithm comparison starts with the regular GA imple-
mentation with Single-Point crossover, group aware initialization and 100 genes
running for 100 generations. The selection mechanism is the tournament se-
lection with a size of 2, the crossover and mutation probabilities are fixed
during the evolution, and are 80% and 10% respectively. When a chromosome
is chosen for mutation, every gene has 10% chance of being flipped. The high
rates used for mutation were chosen to enhance the exploration properties of
the GA. The best individual is kept at each generation, in a elitist fashion.
As previously mentioned, the group aware initialization creates each solution
sequentially, and the genes set as 1 in the previous chromosomes are removed
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from the possible genes to be set as 1 in the next ones. The minimum number
of samples in both the Fexploit and Fexplore functions is set to 200. Again, when
any parameter is changed, the others remain as they previously were unless
explicitly said otherwise.

4.2.4.1
KNN-GA vs Regular GA

The first test performed concerns the KNN variant described in the
previous section. To evaluate the modification proposed, a simulation with
30% total purity was employed, and the Fexploit function was used. The regular
GA implementation was tested against a version with K=5 of the nearest
neighbors’ approach. The number of neighbors was chosen after some simple
initial tests, testing values between 1 and 12. The evolution of both algorithms
is displayed in Fig. 4.10, with the results compiled in Table 4.5. In order to
compare corresponding metrics, the Best Values and Mean Values displayed
are not the KNN ones, but rather the original scores before the neighborhood
average.

Figure 4.10: GA Evolution - KNN vs Regular

Table 4.5: Evolutionary Algorithm - KNN vs Regular Table

The first interesting observations concerns the values obtained for the
fitness function in both versions. Even though the regular version was able to
obtain higher scores, this advantage did not guarantee better results in the
chosen subsets. On the contrary, the Nearest Neighbors version was able to
cover roughly twice the number of correct samples (0.5 relative size vs 0.25)
while keeping the same purity as the regular one (0.94 purity vs 0.95).

This result confirms that the filtering proportioned by the neighborhood
averaging approach helps the algorithm to search for regions with a better
overall structure rather than optimizing for spurious high values. It can be
recalled from Subsection 4.1.2 that in regions with high purity and low size,
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the fitness function was prone to have random high values, what could trap an
optimization strategy in not looking for larger solutions.

As the KNN-GA shows clear advantage in the comparison, it is chosen as
the GA version to be used in the next tests. The proposed variation successfully
achieved the desired enhancements for which it was designed.

4.2.4.2
Initialization

For the 40% total purity, the initialization scheme was changed in order
to see how much that choice could impact the final result. The resulting figure
(4.11) doesn’t show a significant change in the evolution of metrics, and so
no clear winner is found. The group aware initialization is chosen on a tight
margin.

Figure 4.11: GA Evolution - Random vs Group Aware Initialization

4.2.4.3
Total Purity Variation and Fitness Function

Next, the algorithm was tested using both Fexploit and Fexplore as fitness
functions, and in simulations with varying total purity. As in the GA case,
the variation on this number is done to ensure the method is probed in all
possible scenarios regarding the "contamination" of the data with unpredictable
samples.

Fig. 4.12 displays the evolution of the 4 metrics in each one of the 30 runs
for a dataset with 20% of predictable samples for both Fexploit and Fexplore.
The alarming fact is the poor performance of Fexplore. With 20% total purity,
choosing a subset with relative size 5 means choosing the whole available data.
Obviously, this solution has a subset purity of 20%, the same as the total purity.
Function Fexplore consistently fails in performing any filtering them, outputting
roughly the whole data in each single run. This behavior was conjectured in
subsection 4.1.2 and depicts the choice the algorithm has to make in low purity
scenarios about going for large or small subsets. On the other hand though,
the Fexploit function had a robust behavior, being able to close every run with
a relative size reasonably close to one while maintaining a good purity.
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(a) Fexploit (b) Fexplore

Figure 4.12: 20% Total Purity

Fig. 4.13 shows the results for the 40% purity dataset case. Both
functions, in this case, maintain a high portion of predictable samples in their
selected subsets. However, in this case, Fexplore manages to accomplish this
high purity while acquiring a larger amount of such samples, as it can be seen
by the relative size curves.

(a) Fexploit (b) Fexplore

Figure 4.13: 40% Total Purity

Tables 4.6 and 4.7 display the consolidated results for different total
purity for Fexploit and Fexplore respectively. As can be seen, function Fexploit
have a better performance in lower purity, while Fexplore is more capable of
exploring scenarios with a greater portion of predictable samples. Even so,
the performance at those scenarios is not satisfactory even for Fexplore. The
algorithm is able to use less than half of available samples in a 90% total
purity scenario, for example. Function Fexploit, on the other hand, gets stable
results at total purity as low as 20%. Figures 4.14 and 4.15 shows the Box
Plots for relative size and total purity at each fitness function.
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Table 4.6: Evolutionary Algorithm - Fexploit table

Table 4.7: Evolutionary Algorithm - Fexplore table

As in the PSO, function Fexplore showed overall better results. Even so, the
KNN-GA algorithm when used with Fexplore doesn’t bring any improvement
when compared to the Perturbed PSO. On the other hand, the KNN-GA
coupled with Fexploit is capable of probing datasets with only 20% and 30% of
predictable samples without diverging towards picking the whole aviable data.
Function Fexploit is chosen as a more suitable match for the KNN-GA. Although
function Fexplore has a overall performance at higher total purity scenarios,
neither one of the versions is satisfactory in that case. Version Fexploit is then
chosen for the GA setup to specialize in the low total purity cases, and will be
used then on the next evaluations.

(a) Subsets Purity (b) Relative Sizes

Figure 4.14: Genetic Algorithm - Fexploit BoxPlots
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(a) Subsets Purity (b) Relative Sizes

Figure 4.15: Genetic Algorithm - Fexplore BoxPlots

4.2.4.4
Restarting Mechanism & Minimum Sample Size

The previous results were obtained using a Single-Point crossover scheme
and a minimum acceptable sample size in the fitness function of 200 samples.
In the context of the algorithm being suitable to low total purity scenarios,
a question arises. How would the algorithm react if the minimum number of
samples required by the fitness functions was to be changed? In order to answer
that question, the next comparisons on the Genetic Algorithm setup are made
also varying this number.

To test the Restarting Mechanism, a minimum number of 400 samples is
used in the Fitness Functions with the 30% total purity scenario (where 600
of 2000 values innovations follow the AR1 structure). The restart happens at
the 51º generation, near the middle of the evolution process. Fig. 4.16 shows
the evolution of the metrics.

Figure 4.16: GA Evolution - Restarting Mechanism

In a regular scenario, the restarting of the population would affect only
the mean values of the generation, as the best score is kept. However, the
highest nearest neighbor score is the one being preserved, while the unfiltered
fitness score is the one being displayed. The value kept at the restarting is the
best after the KNN smoothing, which is not necessarily the best fitness in the
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population. This can cause the Best Value curve to drop, as it can be seen in
Fig. 4.16.

Table 4.8: Restarting Mechanism

The results don’t show a clear winner. The restating brought an average
small increase in relative size with an also small decrease in purity. Without
enough evidence to be adopted, the restarting mechanism is discarded, and
the regular GA proceeds as the preferred implementation.

Concerning the change in the minimum number of samples required,
the algorithm seems to have responded well. The final relative sizes acquired
by the simulations raised significantly, from 0.4 in the previous comparison to
0.75, with a small decrease in the subset purity from 0.96 to 0.92 . The average
Relative Size increased as expected, but without significantly compromising the
purity of the selected subsets, which is the best result that could be expected.

4.2.4.5
Crossover Mechanism & Minimum Sample Size

To further stress the behaviour of the GA regarding the minimum size
acceptable for subsets this number is raised to 1000 in the next comparison.
The test concerns the crossover mechanism. So far, the Single-Point crossover
has been used, but the Two-Point version was also implemented.

Figure 4.17: GA Evolution - Crossover Mechanism

Both variations are tested and compared. Despite the fact the the results
displayed in Table 4.9 are not significantly different at first sight, the visual
inspection at Fig. 4.17 shows that the two-point crossover imposes a much more
unpredictable outcome, having good results in some runs and bad outcomes
on others.
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Table 4.9: Crossover Mechanism

This unpredictable behavior in the Double-Point technique might be
explained by the nature of the mechanism. When compared to the Single-
Point variation it tends to change a smaller portion of the parent genes when
creating the offspring, which in turn favors exploitation over exploration in the
algorithm. The algorithm then is more prone to exploit interesting areas too
early on in the evolution, leading to a pattern where the final result changes
drastically depending on the initial conditions. The Single-Point crossover is
thus preferred in this case.

At the same time, once again the minimum numbers of samples imposed
seemed to pose the least damage possible. With 1000 minimum samples and
only 600 predictable, the best case scenario would be to choose the minimum
number while gathering all of the predictable ones. This would mean a solution
of relative size 1000

600 = 1.66 (1000 minimum samples chosen over 600 predictable
samples). At the same time, the corresponding purity would be the number
of predictable samples in the subset chosen (at max 600) over the chosen
subset size 1000, namely 600

1000 = 0.6. This means that at the used 30% purity
simulation, the 1000 sample restriction could at the very best have numbers
close to the displayed in Table 4.9.

The Genetic Algorithm can them be concluded to show stable results
when used with the Fexploit fitness function on datasets with a low purity
configuration.

4.2.4.6
Hidden Markov Model (HMM) Benchmark

To help illustrate the potential of the developed tool, it is compared
to the classical regime switching model of the Hidden Markov Model. For
this purpose, a simulation containing 600 AR1 samples followed by 900 noisy
innovations is created. The algorithm is trained once on the simulation with the
final GA algorithm and Fexploit function, and the classification of the intervals
is compared with the reference. The same is done using a Gaussian Hidden
Markov Model (HMM) of two states, like the one used in [26].

The HMM solution does considerably better, as depicted in Fig. 4.18.
If this simple setup was to be expected in a real scenario, there would be
no reason not to use the HMM version. To slightly complicate the challenge,
instead of 900 samples of Gaussian with null mean and variance 2, the random
regime is composed of 700 samples like that followed by more 700 of the same
type but with variance 6. To be fair with the HMM competitor, it is configured
to be trained for 3 regimes, while the GA suffers no change.
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(a) Final GA in Simulation (b) HMM in Simulation

Figure 4.18: Simulation Comparisons

Fig. 4.19 display the results. Even with the unrealistic knowledge of the
number of regimes, and with all those regimes unrealistically following simple
Gaussian innovations processes, the rise in the number of possible choices and
in the simulation size alone were sufficient to largely degrade the performance
of the Hidden Markov algorithm. At the same time, the performance of the
GA was totally unaffected. This example does not fully explore the potential
of the new approach. Although the Hidden Markov Model is modelled with
Gaussian innovations in mind, the P-Crawl does not make assumptions on the
structure of the data, and thus is less likely to have its performance degraded
should the data follow a more complicated dynamic.

(a) Final GA in Second Simulation (b) HMM in Second Simulation

Figure 4.19: Simulation Comparisons

4.2.5
Summary

In the previous sections, both the GA and PSO were studied in their use
as optimization procedures in the P-Crawl framework. The comparisons shows
a complementary relationship between the two methods. The GA is coupled
with the Fexploit fitness function in order to become an appropiate algorithm
for datasets with a low total purity. The results displayed a good performance
of that setup in scenarios ranging from 20% to 40% total purity.

The PSO algorithm displayed a more consistent exploration of the
subset’s space. Although this exploration revealed to be dangerous in low total
purity scenarios, where it could lead the algorithm to pick the whole dataset,
it performed very well in datasets ranging from 40% total purity to 100%.

Together, both algorithms cover ranges from 20% to 100% of predictable
intervals. The difficulty is then to detect which one to use, since the total
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purity is not an available information in a real situation. The final discussion
in Subsection 4.1.2 can help to elucidate this matter, but does not define a
clear decision rule.

In every scenario where the PSO algorithm failed to search the optimal
subset, it diverged toward the whole dataset. This fact can be used to create
a simple rule of thumb. Test the PSO first, and visualize the output. If it is a
smaller subset than the whole dataset, use it. If not, use both the PSO and the
GA and see which one gives better results in the test phase of the framework.
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4.3
Real Case Study - Brazilian Stock Market Intraday Data

4.3.1
Dataset

In the real case study, the dataset used was from the Brazilian
Stock Market (Bovespa). The data was obtained from the official FTP site
(ftp://ftp.bmf.com.br/MarketData/) with help from the R package GetHF-
Data [42]. The files consist of trade information from every transaction in the
Limit Order Book from 2018-07-02 to 2019-03-3, compromising 8 months of
data. Each day of transactions in the Bovespa corresponds to a file of in av-
erage 300MB, so the whole information available represents a disk space of
nearly 50GB. To narrow down the scope of the data the movement of trade
orders was analyzed on the first day available, and the 20 stocks with the most
trading volume for this day were chosen. Fig. 4.20 shows the number of trades
for each one of those, as well as their corresponding symbol.

Figure 4.20: 20 Most Traded Stocks

The trading data represents each time a specific stock was traded, at
which price, and at what volume (along with other information). This type of
record can be aggregated in different time scales. To the current study, those
aggregations were done for each stock and each day in the 5-minute, 60-minute
and daily windows. The time series of interest is the closing price at the end
of each 5-minute window interval for a particular stock. Once the trades are
aggregated in this time frame, the resulting series has approximately 9.300
observations for each stock. The next step is to define a feature vector capable
of summarizing enough information about each moment in the stock dynamics.
For this purpose, a number of technical indicators were studied and computed
for the series.

One of the key aspects of the chartists’ theory in the market concerns
levels of support and resistance for the price. Those levels are defined roughly
as the last locals minima and maxima of the traded values, and are believed to
contain information concerning the current market belief about those stocks.
If a price approaches a support region, wherein the recent past represented
the lowest price at which buyers were willing to acquire that paper, the stock
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will be tested to see if this belief (that the asset is worth more than that
quantity) still hold amongst participants. If the test fails and the price "breaks
the support", it could be an indicator that the stock is losing value, and it
might be a good time to sell. The strategy of keeping track of support and
resistance levels falls in a technical concept referred to as Price Action.

In chartist theory, there are other types of strategy and indicators.
Two important categories are the Trend-following and Reversal types. Trend
Following indicators try to detect a emerging trend in price levels, and operate
in its favor before it is consolidated by the rest of the market. An example of
this type of strategy would be the moving average indicators discussed earlier.

Reversal strategies, on the other hand, try to identify moments where a
trend will shift. One example of those indicators are the Boillinger Bands for
the given stock. Those bands are drawn according to a rolling estimate of the
standard deviation of price innovations, and are a key factor in many Technical
Analysis strategies. They are used to operate a mean-reversion strategy, where
every time the price gets above the upper band or below the lower one, it is
believed to proceed to the contrary band, sometimes stopping at the middle
level instead. Fig. 4.21 displays the bands for a fraction of the ITS4A five-
minute price series as well as support and resistance levels.

Figure 4.21: Supports, Resistances, and Boillinger Bands

Yet another important category for technical metrics is that of the
momentum indicators. The indicators at this category try to grasp the strength
of market movements. An example would be the volumes of stocks traded.
If the volume of transactions for a certain stock starts to increase, it may
indicate a sudden interest of the market participants for that particular stock,
pointing towards the incorporation of new information. This can help in the
early identification of trends, for instance.

Table 4.10 compiles all the indicators used in the construction of the
feature matrix. Unless explicitly written, those metrics were all computed in
reference to the 5-minute interval windows. The absolute values for Boillinger
Bands, Support and Resistance lines, and Moving Averages were not used,
as the level of those values is not as interesting as their value with respect to
their price. Instead, the quantities used were the log returns of those indicators
in respect to the price series. This way, a small value with respect to the
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last support value means that the series is close to that support line. The
Pivot Points mentioned are yet another technical indicator, computed using
the values for the closing price, maximum price and minimum price registered
in the last trading day. Instead of the simple moving average discussed earlier,
a Exponential Moving Average (EMA) is used. This form o moving average
uses a weight decay that assigns greater importance to more recent values.
The angular coefficient used is computed in respect of the last 120 values in
the 60-minute series. The target for each row is the next log return for the
price series after 30 minutes, or a horizon of 6 observations in the 5-minutes
price series. This was chosen upon the hypothesis that big movements might
be more behaved to predict than small 5-minute oscillations, and may as well
lead to bigger profits for a trader.

Table 4.10: Feature Vector

As feature selection is a crucial step in machine learning procedures, the
results in the Experiments section will be highly influenced by the chosen
representation summarized in Table 4.10. This specific representation was
chosen in a heuristic manner, aiming to encompass an exhaustive set of
technical principles. Other feature sets can be evaluated in future works.

4.3.2
Experiments

4.3.2.1
BRFS3 Stock Prices

Initially, the stock with greater volume at the first date available is chosen
for exploration. This stock is the BRFS3, and represents a large brazilian
company in the food sector. The first choice to be made in order to apply
the P-Crawl is regarding the regression model used in the fitness function
evaluation. As a non-linear relationship among the elements of the feature
vector is expected, the chosen model must be able to learn such structure.
At the same time, the choice needs to take into consideration the training
time, as each interaction of the optimization mechanism requires training in a
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hundred different subsets. With those restrictions in mind, the Boosted Trees
implementation of [41] is used. In order to make the learning of the model
fast during the optimization phase and avoid a higher variance to the possible
outcomes, it is restricted to train only up to the first 10 trees. The parameters
of the model are the max depth of the regressors, the shrinking factor, and
the amount of sub-sampling to be done when training each new tree. Those
parameters are chosen in a grid-search, using cross validation to assert the best
combination.

The final series has a total of 9.543 observations. Unfortunately, the
proposed model has limitations about how to find predictable samples in such
a large number while keeping a granularity on the group size. If the usual
imposition of a group size of 2% of the total was imposed on big samples, the
ability to detect spikes of predictability or noisy behavior would be degraded.
A better solution in those cases could be employing the optimization in
moving windows, but here this complexity was avoided. In order to mimic the
simulation setup, only the first 2000 observations are probed for predictable
periods. Fig. 4.22 displays the series used for training.

Figure 4.22: 5 Min Price Series - Training Samples

Before actually scanning the interval, a choice must be made though. In
the simulation part of the Result Section two models were chosen, one was
the Perturbed PSO coupled with the Fexplore fitness functions for high purity
scenarios, and the other was the KNN-GA using Fexploit for datasets with a
low proportion of predictable regimes. To further study which one to choose,
the procedure proposed in the fitness function simulation is repeated with the
data at hand. Half the available samples for training are repeatedly drawn and
the cross-validated MASE of the boosted trees is computed for each trial. The
histogram of those values is displayed at Fig. 4.23.
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Figure 4.23: Half-Sample MASE Histogram - Boosted Trees

As expected, the pattern displayed does not directly link to any one of the
examples in the fitness function simulation section. This is because financial
price series are notoriously hard to predict, and so it would be unwise to expect
MASE values much lesser than 1. On the other hand, the histogram displays
another characteristic mentioned in the same context; the high variance of the
distribution. The value of the error metric is revealed to depend largely on the
chosen subset, a characteristic showed by the simulations with greater purity.
Nevertheless, this inspection is not formal, and further methods are required
to decide how to proceed. The rule of thumb proposed in Subsection 4.1.2, and
the Perturbed PSO with the Fexplore function is employed first at the data.

When the Perturbed PSO is used the results obtained are that of Fig.
4.24. The final signal covers 80% of the available dataset, a configuration linked
to good results in the simulation studies. At first sight then, the model seems
to be a consistent choice.

(a) Selected Samples (80% Selected) (b) Score Evolution

Figure 4.24: PSO Algorithm used in the BRFS3 Training Set

To further assert this conclusion, another comparison is employed. The
whole point of the optimization routine is to find a subset with a better cross-
validated error metric. The obvious sanity check is thus to evaluate if the
final solution indeed carries this property. For that purpose, the Boosted Tree
model was trained using both the whole available samples and only the samples
chosen by the algorithm. The model had the same number of trees as in the
optimization procedure, and the parameters were chosen separately for each
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case with the same method as well. In each case, the trained model MASE was
computed by a k-fold cross validation and the results are displayed at Table
4.11.

Table 4.11: MASE Comparison (Cross Validation)

As it can be noticed, the selected subset brought a decrease in the
error metric, confirming that the Selector successfully performed it’s task.
Next, labels are generated from the output and used to train the Classifier
as described in the Proposal section. As already mentioned this could be done
with any given model, and even with a whole different feature representation.
In the spirit of keeping things simple, though, the same matrix will be used,
and the chosen model will be the Boosted Classification Trees which are also
implemented at [41]. For this task, the parameters were chosen in order to
maximize the cross-validated accuracy of the training predictions, with the
same grid-search used formerly.

The output of the classifier is set to be the probability of the sample
being predictable, and so is bounded between 0 and 1. A natural way to select
predictable samples would be to elect those above the 0.5 mark. In the present
context though, a higher standard is chosen. With the goal of being as selective
as possible, the predictable samples will be only those at which the output of
the classifier is above 0.99. Even with this strict selection mechanism, 44% of
the test set is chosen for forecasting, as displayed in Fig. 4.25.

Figure 4.25: Periods in the Test Set Chosen for Prediction (44% Selected)

As a tree based algorithms is used, another useful information can
be provided. By averaging the improvement at each split of each tree, this
algorithm is able to produce a measure of the relative importance of each
feature [16]. Fig. 4.26 shows the feature importance for the models trained in
both the whole dataset and in the selected samples. It is possible to see that
in both cases, the trend computed is the most important feature. In the first
case though, this feature is much more important than all of the others. In
the selected subset scenario the feature importance is more evenly distributed,
with other features obtaining a relevance close to the trend. This significant
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change in the importance happens even with the selected subset holding a
number of samples not much smaller than the original one (80%).

(a) Whole Dataset (b) Selected Samples

Figure 4.26: Relative Feature Importance

In both cases the following positions are occupied by the support and
resistance levels. Those levels are of key importance for chartists, and the
present study indeed points them as influential. A key difference that can
be noticed between the two though is that in the selected subset case, all of
the moving averages appear among the top 15 most important features. This
agrees with the findings of [26], where this indicator is argued to have a higher
importance in specific moments more suitable to technical trading. Pivot Points
also seem to be important to both situations, consolidating the fact that, in
general, Price Action indicators seem to be very relevant when compared to
the other indicators in the feature vector. Lower Boillinger Bands also appear
in both scenarios, suggesting that this metric might be more effective when
used in respect to those than when used in respect to the upper ones.

Now the Forecaster can be trained and evaluated. As stated in the
Proposal section, the forecasting model doesn’t need to be the same used in
the Selector. Nevertheless, for this test the same model is employed to check
if the specific pattern detected by the Perturbed PSO algorithm holds on new
observed samples. The model is then evaluated in two different ways. First, it
is trained on the whole dataset, and the MASE is computed using the whole
test set. Second, the same model is trained only in the selected samples in the
training set, and only the selected samples in the test set are used to compute
the error.

Table 4.12: MASE Comparison (Test Set)

Table 4.12 shows that differently from what happened at the training set,
the MASE metric was not enhanced in the test set. This fact makes it evident
that lowering the cross-validation score in-sample doesn’t necessarily means it
will be lowered out-of-sample.
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4.3.2.2
Most Traded Stocks

With the preliminary tests carried at BRFS3 stock, a more complete
study is performed. This evaluation is carried in all of the 20 chosen papers.
In order to do that, the exact same procedure taken before will be repeated
for each one of the selected stocks. For each series, the percentage of test
set coverage will be displayed along with other metrics. Those metrics are:
the MAE, MASE, Correct Directional Changes, and the naive strategy error.
They are evaluated for both the whole dataset and selected subset cases. The
Correct Directional Changes (CDC) asserts how often the model was able to
correctly predict if the price would rise or fall, and is computed as

CDC = 1
n

n∑
i=1

Dt

Dt = 1 if ŷt ∗ yt > 0, 0 otherwise
(4-6)

In the first run, the comparison is carried using the same boosted trees
models employed so far. The results are summarized in Table 4.21. As it can
be analyzed in this table, the increase in MASE does not represent a general
tendency, instead the mean of the metric for the select samples improves
overall. The other two metrics of interest (MAE and CDC) also show to be
enhanced by the technique. To test whether or not the framework brought
significant improvements, a Student-T Paired Test is performed. The test pairs
the computed values for both cases, and take the differences from the numbers
obtained when using the whole dataset and the ones obtained with the selected
samples. The null hypothesis is that those differences have zero mean, and an
one-sided test is performed to assert the chance of this mean being great or
equal to zero for the MAE and MASE, and less or equal for the CDC. A 5%
significance level will be require to refute the null case and state a positive
result. The mean value µd and standard deviation σd of those differences is
computed, and the following test statistic is calculated

t = µ̄d
σd√
n

(4-7)

The statistic t follows a t-Student distribution with n − 1 degrees of
freedom (19 in this case) and is computed for the MAE, MASE and CDC.
Table 4.13 compiles the results. Although the improvements in the CDC and
MASE does not pass the 5% significance level, the MAE successfully conquers
the mark, displaying evidence of improvement in this metric. Even though
every metric displayed better results when the framework was employed, the
only significant change confirmed is the enhancement in the absolute error.
Table 4.21 colors the cases where these numbers enhance and where they not
to facilitate the visual inspection.

Table 4.13: Paired Tests P-values for the Boosted Trees model
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Once the enhancement in the Mean Absolute Error is settled, it remains
necessary to quantify it. The question to be answered then is how much im-
provement did the framework provide. Diving deeper in the results, the scatter
plot between the whole dataset trained models’ errors and the predictable sam-
ples ones’ is computed. Fig. 4.27 shows the arising pattern. Its is easy to notice
that a linear relationship can be inferred, with the metrics evaluated at the
selected intervals being in average 0.81 times the regular ones. This signifies
an reduction of almost 20% the original value, demonstrating the effect of the
methodology.

Figure 4.27: Regular and Enhanced MAEs for the Boosted Trees model

Table 4.14 summarizes the statistics for the regression performed. It is
worth noticing that the results reinforce the significance of the improvement,
with the 95% confidence interval for the angular coefficient being entirely
bellow 1.

Table 4.14: Statistics for the regression between metrics - Boosted Trees

In the previous results, the same model was used for both the optimiza-
tion stage and the forecasting of select samples (although with different pa-
rameters). A question that arises then is if this improvement is restrict to this
model or if the selected signal indeed unveils a structure intrinsic to the series
that can be exploited by other techniques.

To answer that question the signals computed are tested again with
two different models. The first, the Random Forest (RF), another tree based
variant. The second, a linear regression paired with the Least Absolute Square
Shrinkage Operator (LASSO) model for feature selection [16]. The parameters
presented in those models will be computed separately for each series as in the
previous case. For the RF model this computation will be also done with the
aid of cross validation, and for the LASSO the Bayesian Information Criterion
(BIC) will be used. The comparison regarding those models is carried on
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exactly as it was with the first one, and Tables 4.22 and 4.23 contemplate
the findings with the same colored aids for visual evaluation.

The linear model does better than the Boosted Tress overall. Due to the
complicated dynamics of the price series, a simpler regressor as this one can be
safer, being less prone to over-fitting. For this model again the same pattern is
observed for the enhancements in MAE and CDC. The MASE metric on the
other hand actually increases this time. As formerly done, paired-t tests are
performed to access the significance of those differences.

Table 4.15 displays the results, reinforcing the only significant change as
being the enhancement in MAE, with this metric displaying strong evidence
of improvement. The relation of values between the two scenarios is again
displayed in Fig 4.28.

Table 4.15: Paired Tests P-values for the linear model

Figure 4.28: Regular and Enhanced MAEs for the linear model

This time the decrease in the mean absolute error is significantly smaller.
A conjecture that could explain this is that the model used in the optimization
stage has advantage to explore the resulting structure at the online phase.
Another reason might be linked to the better performance already obtained
by the linear model, as it is natural to assume that the better the results, the
more difficult to enhance it. Nevertheless, the selection of samples was able to
reduce by 3% the model error. Table 4.16 displays the regression details.

Table 4.16: Statistics for the regression between metrics - linear model

Finally, the Random Forest model is applied to the stocks. Concerning
the overall performance, this model does better than the boosted one, but
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slightly worse than the linear model. The benchmark in Table 4.23 depicts once
again an improvement in the MAE and CDC with an apparent deterioration
of the MASE. The same tests already performed for the other models are
repeated and summarized in Table 4.17. Again the enhancement in the mean
absolute error is confirmed. This time though, the worsening in the MASE
is also significant (the p-value greater than 0.95 shows moderate evidence in
favor of the null hypothesis).

Table 4.17: Paired Tests P-values for the Random Forest model

In respect to the relation of MAEs between the models using all of the
samples and using only the select data points, Fig. 4.29 displays another strong
linear relation, with a coefficient very close to the one computed for the linear
model. The details of this regression are displayed at Table 4.18.

Figure 4.29: Regular and Enhanced MAEs for the Random Forest model

Table 4.18: Statistics for the regression between metrics - Random Forest

The improvement observed when using the Boosted Trees model in the
mean absolute error was significant in the other two variants tested. The
perceived deterioration in the MASE for those other results revealed that the
variance of the selected samples is, in general, smaller than in the whole set.
The results so far are gathered in Table 4.19 for comparison.

Table 4.19: Models Results
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To increase the power of the conclusions the combined 60 points of the
models are compiled together and the paired tests are performed on this
aggregated data. The outcomes help to uncover significance for the CDC
improvement, displaying moderate evidence for this metric, while showing very
strong evidence for the decrease in MAE and no evidence at all for the MASE
deterioration. These results show that the effect of the methodology was not
only to find smaller variance intervals, but ones where the direction of price
changes is also more predictable. Although reasonable that the original model
was more capable of exploring the signal structure, the fact that this is not
unique to it shows the successful exposure of a more structured series in the
chosen subset. This conclusions favors the Adaptive Markets Hypothesis, with
the results shedding more light in the efficiency discussion.

Table 4.20: Paired Tests P-values for the Aggregated Models Results
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Table 4.21: Framework Performance in All Chosen Stocks with the Boosted Trees
model
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Table 4.22: Framework Performance in All Chosen Stocks with the linear model
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Table 4.23: Framework Performance in All Chosen Stocks with the Random Forests
model
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5
Conclusion and Future Work

The present work discussed the efficiency of the market as well as the
studies that inspired the proposed idea. The simulations performed showed
that the P-Crawl is capable of performing well in a large variety of conditions.
Regarding the proposed optimization procedures, the Perturbed PSO displayed
better exploration-exploitation capabilities for the task at hand than the
regular PSO. The same result was obtained for the KNN-GA, showing superior
results than the regular Genetic Algorithm. To access the performance of the
framework, different simulations where made. The term purity was used to
refer to the percentage of predictable samples in each simulation.

The Perturbed PSO and the KNN-GA coupled with the two fitness
functions proposed exhibited good results for a range of contamination going
from 20% to 100% purity. Two different score functions were proposed, Fexploit
and Fexplore, with their difference being in the importance they give to the size
of the selected subsets. The KNN-GA with the Fexploit function showed robust
results in total purity from 20% to 40%, while the Perturbed PSO coupled
with the Fexplore variant consistently discovered the right patterns in total
purity scenarios from 40% to 100%. Although some route of investigation and
rule of thumb were discussed, the problem of how to identify the total purity
configuration of a real-life dataset with respect to a specific model remains
open.

The relative importance of some major technical indicators were com-
pared. The trend of the price series was selected as the most important fea-
ture, and the Price Action technical indicators exhibited a relevant importance.
This information can be used to refine the feature representation for intra-day
stock data in future work. Different indicators and feature representations can
also be explored, since this choice has a major impact in finding predictable
samples in the series.

When applied to the brazilian stock market intraday data, the analysis
elected the Perturbed PSO variant as adequate for the task. The 20 most
traded stocks at the beginning of the studied period were used as a benchmarks,
and the MAE, CDC and MASE metrics were evaluated with and without
the use of the proposed framework. The P-Crawl significantly increased the
performance on the MAE and CDC, asserting the utility of the proposed
methodology. The same result was not achieved for the MASE. The reductions
where the greatest when the same model was used for both the probing and
forecasting of samples, achieving a contraction of MAE as high as 19%.

Not only the selectivity in time-frames enhanced the evaluation metrics,
but the period scanned for predictability in respect to a particular model was
more prone to be exploited by it. Although the framework was not able to
improve the MASE metric, the decrease in the correct directional changes
showed that the selected intervals had a more predictable price dynamic. The
outcome is favorable to the AMH, aggregating more evidence in favor a floating
efficiency level in the market.
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Regarding future works, many opportunities are available. To make
the P-Crawl more feasible, the speed of the proposed algorithms is of great
importance. A more efficient implementation of the optimization procedure is
fundamental for the framework to be more easily employed. Computing each
iteration concurrently in different CPUs or in the computing units of a GPU
could considerably reduce the time required for the procedure. The matter of
how to derive conclusions about the total purity of a real dataset in regard to
a statistical model is also open.

Every building block of the P-Crawl can be fiddled with. A broad range
of statistical models can be tested in the Selector, Forecaster and Optimizer.
New fitness functions can be proposed, such as using financial gains instead of
error metrics for fitness scores.

The feature representations also allow for interesting experiments in
future work. One possible approach could be to construct a vector using
predictability metrics, building on the studies of [17, 18, 19, 21] and others.
This way, the optimization procedure would be able to combine a series of
predictability signals to discover the best possible indicator.

The implementation used for the GA and PSO is also an important
factor. The PSO showed more robust exploration properties, and a possible
cause can be the randomness introduced at the particle representation. A
similar approach can be taken for the GA algorithm, using Quantum-inspired
evolutionary algorithms such as in [43, 44, 45].
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