XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: ALGORITMOS ADAPTATIVOS COM EXPLORAÇÃO DE ESPARSIDADE EM REDES DE SENSORES DISTRIBUÍDAS Autor: TAMARA GUERRA MILLER
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
RODRIGO CAIADO DE LAMARE - ORIENTADOR
Nº do Conteudo: 27190
Catalogação: 17/08/2016 Liberação: 12/09/2016 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27190&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27190&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.27190
Resumo:
Título: ALGORITMOS ADAPTATIVOS COM EXPLORAÇÃO DE ESPARSIDADE EM REDES DE SENSORES DISTRIBUÍDAS Autor: TAMARA GUERRA MILLER
Nº do Conteudo: 27190
Catalogação: 17/08/2016 Liberação: 12/09/2016 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27190&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27190&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.27190
Resumo:
Neste trabalho de dissertação são propostos algoritmos adaptativos que
exploram a esparsidade em redes distribuídas de sensores para estimação de
parâmetros e estimação espectral. São desenvolvidos algoritmos gradiente conjugado
(CG) distribuído para os protocolos consenso e difusão em versão
convencional e modificada (MCG). Esses algoritmos são desenvolvidos com
exploração de esparsidade usando as funções penalidades l1 e log-sum. Os
métodos propostos apresentam um melhor desempenho en termos de velocidade
de convergência e desvio médio quadratico (MSD) que as já conhecidas
variantes distribuídas do algoritmo least mean square (LMS) e muito próximo
ao desempenho do algoritmo recursive least square (RLS). Além disso, propõe-se
um algoritmo distribuído de optimização alternada de variáveis discretas e
contínuas (DAMDC) baseado no LMS. O algoritmo DAMDC-LMS apresenta
um desempenho muito próximo ao algoritmo oráculo e tem maior velocidade
de convergência que os algoritmos estudados com exploração de esparsidade.
Os resultados numéricos mostram que o algoritmo DAMDC-LMS pode ser
aplicado em vários cenários.
Descrição | Arquivo |
NA ÍNTEGRA |