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DISSERTAÇÂO DE MESTRADO

Dissertation presented to the Programa de Pós–graduação em
Engenharia Elétrica of the Departamento de Engenharia Elétrica,
PUC-Rio as partial fulfillment of the requirements for the degree
of Mestre em Engenharia Elétrica.

Advisor: Prof. Rodrigo Caiado de Lamare

Rio de Janeiro
March 2016

DBD
PUC-Rio - Certificação Digital Nº 1412775/CA



Tamara Guerra Miller

Distributed Sparsity-Aware Signal Processing
Algorithms for Sensor Networks

Dissertation presented to the Programa de Pós–graduação em
Engenharia Elétrica of the Departamento de Engenharia Elétrica,
PUC-Rio as partial fulfillment of the requirements for the degree
of Mestre em Engenharia Elétrica.

Prof. Rodrigo Caiado de Lamare
Advisor

Centro de Estudos em Telecomunicações — PUC-Rio
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1. Engenharia elétrica-Tese. 2. Processamento distribúıdo
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Abstract

Miller, Tamara Guerra; Caiado de Lamare, Rodrigo (Advisor).
Distributed Sparsity-Aware Signal Processing Algorithms for
Sensor Networks. Rio de Janeiro, 2016. 83p. MSc. Dissertation — De-
partamento de Engenharia Elétrica, Pontif́ıcia Universidade Católica do
Rio de Janeiro.

This dissertation proposes distributed adaptive algorithms exploiting

sparsity for parameter and spectrum estimation over sensor networks. Con-

ventional and modified conjugate gradient (CG and MCG) algorithms using

consensus and diffusion strategies are presented. Sparsity-aware versions of CG

an MCG algorithms using l1 and log-sum penalty functions are developed. The

proposed sparsity-aware and non-sparse CG and MCG methods outperform

the equivalent variants of the least-mean square (LMS) algorithms in terms of

convergence rate and mean square deviation (MSD) at steady state, and have a

close performance to the recursive least square (RLS) algorithm. The diffusion

CG strategies have shown the best performance, specifically the adapt then

combine (ATC) version. Furthermore a distributed alternating mixed discrete-

continuous (DAMDC) algorithm to approach the oracle algorithm based on the

diffusion strategy for parameter and spectrum estimation over sensor networks

is proposed. An LMS type algorithm with the DAMDC proposed technique ob-

tains the oracle matrix in an adaptive way and compare it with the existing

sparsity-aware as well as the classical algorithms. The proposed algorithm has

an improved performance in terms of MSD. Numerical results show that the

DAMDC-LMS algorithm is reliable and can be applied in several scenarios.

Keywords
distributed signal processing; sensor networks; adaptive algorithms;

sparsity-aware algorithms.
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Resumo

Miller, Tamara Guerra; Caiado de Lamare, Rodrigo (Orientador).
Algoritmos Adaptativos com Exploração de Esparsidade em
Redes de Sensores Distribúıdas. Rio de Janeiro, 2016. 83p. Dis-
sertação de Mestrado — Departamento de Engenharia Elétrica, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Neste trabalho de dissertação são propostos algoritmos adaptativos que

exploram a esparsidade em redes distribúıdas de sensores para estimação de

parâmetros e estimação espectral. São desenvolvidos algoritmos gradiente con-

jugado (CG) distribúıdo para os protocolos consenso e difusão em versão

convencional e modificada (MCG). Esses algoritmos são desenvolvidos com

exploração de esparsidade usando as funções penalidades l1 e log-sum. Os

métodos propostos apresentam um melhor desempenho en termos de velo-

cidade de convergência e desvio médio quadratico (MSD) que as já conhecidas

variantes distribúıdas do algoritmo least mean square (LMS) e muito próximo

ao desempenho do algoritmo recursive least square (RLS). Além disso, propõe-

se um algoritmo distribúıdo de optimização alternada de variáveis discretas e

cont́ınuas (DAMDC) baseado no LMS. O algoritmo DAMDC-LMS apresenta

um desempenho muito próximo ao algoritmo oráculo e tem maior velocidade

de convergência que os algoritmos estudados com exploração de esparsidade.

Os resultados numéricos mostram que o algoritmo DAMDC-LMS pode ser

aplicado em vários cenários.

Palavras–chave
processamento distribúıdo de sinais; redes de sensores; algoritmos adapta-

tivos; algoritmos com exploração de esparsidade.
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1
Introduction

1.1
Overview

For several years, sensor networks have been applied in medicine, in-

dustry, agriculture and other areas [1]-[9],[11]-[18]. Distributed signal pro-

cessing has become a very common and useful approach to extract information

in a network by performing estimation of the desired parameters, spectrum es-

timation and other applications. The efficiency of the network depends on the

communication protocol used to exchange information between the nodes, as

well as the algorithm to obtain the parameters. Another important aspect is

to prevent a failure in any agent that may affect the operation and the per-

formance of the network. Similar to a single node adaptive processing, the

performance of the network may vary in time. Distributed schemes can of-

fer better estimation performance as compared with the centralized approach,

based on the principle that each node communicates with the other nodes and

exploits the spatial diversity in the network [1].

The main strategies for communication and exchange of information

in distributed processing are incremental, consensus and diffusion protocols.

Recent studies show that diffusion strategies outperform the other ones [1], [6].

Each strategy will be introduced and discussed in the next chapter.

Distributed learning procedures also offer an attractive approach to

dealing with large data sets [1]-[9], but still face many challenges in this field.

It is necessary to ensure a strongly link connection and large communication

bandwidth between nodes to start and maintain the network operation to

estimate parameters and transmit their local data. In many scenarios, the

impulse responses of unknown systems can be assumed to be sparse, containing

only a few large coefficients interspersed among many negligible ones [9].

Other important challenges in distributed processing are the reduction of

the computational cost, and to achieve a faster convergence rate than the

centralized methods and a lower error value at steady state.
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Chapter 1. Introduction 12

1.2
Motivation

Most of the studies developed for distributed processing in general and

particularly exploiting sparsity have focused on the least-mean square (LMS)

and recursive least-squares (RLS) algorithms using different penalty functions

[9]-[12]. These penalty functions perform a regularization that attracts to zero

the coefficients of the parameter vector that are not associated with the weights

of interest. The most well-known and exploited penalty functions are the l0-

norm, the l1-norm and the log-sum [10]. With these techniques a better network

performance is achieved, in the presence of sparsity in the set of parameters.

The Conjugate Gradient (CG) algorithm [14] has been studied and de-

veloped for adaptive centralized and distributed processing, mostly using the

diffusion strategy [15], which often results in algorithms that are more compu-

tationally complex than consensus techniques. The faster convergence perform-

ance of CG algorithms over the LMS algorithm and its lower computational

complexity and better numerical stability than the RLS algorithm makes it

suitable for this task. However, prior work on distributed CG techniques is

rather limited as a consensus-type algorithm and techniques that exploit pos-

sible sparsity of the signals have not been developed so far. For those reasons

it is proposed in this work distributed CG algorithms for parameter estimation

over sensor networks for non-sparse and sparse systems.

The optimal algorithm for processing sparse signals and systems is known

as the oracle algorithm. It can identify the positions of the non-zero coefficients

and fully exploit the sparsity of the system under consideration [16]. Prior work

on distributed oracle method is rather limited and techniques that exploit

possible sparsity of the signals using discrete and continuous variables have

not been developed so far. In this dissertation we also propose a distributed

AMDC-LMS algorithm based on alternating and mixed optimization of con-

tinuous and discrete values. Specifically, we develop distributed LMS algorithm

using the diffusion protocol for distributed parameter and spectrum estima-

tion.

1.3
Contributions

The contributions can be summarized as follows:

. Two CG-based consensus distributed solutions and two diffusion

distributed CG-based strategies are proposed for parameter estim-
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Chapter 1. Introduction 13

ation. In detail, the consensus distributed conventional CG solu-

tion (Consensus-CG), consensus distributed modified CG solution

(Consensus-MCG), diffusion distributed conventional CG solution

(DDCG) and diffusion distributed modified CG solution (DDMCG) are

developed and analyzed in terms of their computational complexity.

The proposed CG algorithms present a faster convergence rate than

the LMS-type algorithms and a lower computational complexity than

RLS-type techniques for the same communication protocols. These

algorithms can be used in different applications such as environmental

monitoring and medical parameters identification.

. Four CG-based consensus distributed solutions and four diffusion

distributed CG-based strategies, all of them exploiting sparsity for

parameter estimation. In detail, the sparsity-aware Consensus-CG and

Consensus-MCG solutions, and the sparsity-aware diffusion distributed

CG and MCG solutions using for each one the l1 and log− sum penalty

functions. The proposed sparsity-aware CG methods have an improved

performance in terms of mean square deviation (MSD)and convergence

rate compared with the same versions of the least-mean square (LMS) al-

gorithm and a close performance to the distributed recursive least squares

(RLS) algorithm.

. A distributed adaptive mixed discrete continuous (DAMDC) algorithm

for parameter estimation. Specifically, we developed the (DAMDC-LMS)

algorithm using the diffusion protocol to compared with the Oracle-LMS

algorithm. The DAMDC-LMS algorithm is proposed in order to obtain

a very close performance in terms of convergence and minimum square

deviation (MSD) to the oracle method. The application scenarios of this

method are parameter estimation and spectrum estimation over sensor

networks.

1.4
Dissertation Outline

This dissertation is organized as follows:

. Chapter 2 presents an overview of the theory related to this work and

introduces the algorithms and strategies that are used in this disserta-

tion. The topics of distributed signal processing, adaptive algorithms,

distributed strategies and sparsity-aware techniques are covered along

with a review of previous work in these topics and important applica-

tions such as parameter estimation and spectrum estimation.
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. Chapter 3 describes the system model and problem statement of adaptive

algorithms for distributed networks based on CG strategies. Specifically,

consensus and diffusion adaptive solutions are proposed. The computa-

tional complexity as well as convergence rate and MSD value are analysed

for the distributed estimation scenario.

. In Chapter 4, adaptive CG algorithms for distributed estimation exploit-

ing sparsity are proposed. The analysis of the proposed l1 and log-sum

CG and MCG algorithms are presented in terms of their stability, steady-

state, tracking performance and computational complexity.

. Chapter 5 presents a novel distributed LMS scheme based on alternating

mixed discrete-continuous adaptation (DAMDC-LMS). This algorithm

is developed for conventional and sparse data sets for parameter and

spectrum estimation scenarios. This proposal is compared with recently

reported algorithms in the literature such as the oracle and sparsity-

aware techniques in terms of MSD and tracking capability.

. Chapter 6 presents the conclusions of this work, and discusses future

directions that could be carried out in terms of research.

1.5
Notation

a the vector (boldface lower case letters).

A the matrix (boldface upper case letters).

< real part.

IN N ×N identity matrix.

(.)∗ complex conjugate.

(.)T matrix transpose.

(.)H Hermitian transpose.

E[.] expectation operator.
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2
Literature Review

In this chapter we review prior art on distributed signal processing.

The network connection models, the main protocols to exchange information

between nodes and some adaptive algorithms usually used for distributed pro-

cessing are introduced and analysed. Fundamental sparsity-aware techniques

are discussed as important methods for parameter estimation of sparse systems

covered in our research.

2.1
Distributed Signal Processing

With the aim of exploiting the potential of sensor networks, it is essential

to develop energy and bandwidth efficient signal processing algorithms that can

be implemented in a fully distributed manner. Distributed signal processing

requires judicious coordination and planning as well as careful exploitation

of the limited communication capability of each individual sensor [2]. It aims

to exploit the capacity of cooperation between nodes to provide a high level

adaptation performance, and is able to solve optimization and adaptation

problems [18].

In the non-cooperative mode of operation, agents act independently of

each other. In the centralized mode of operation, agents transmit their data

to a fusion center, which is capable of processing the data centrally. The

fusion center then shares the results of the analysis back with the distributed

agents. The centralized solutions can be powerful, but they demand high

levels of computational cost and routing resources to perform the exchange

of information to and from the fusion center. Another important weakness of

centralized networks is the fact that if the fusion center fails the entire network

collapses [1].

In contrast, in the distributed mode of operation, agents are connected

by a topology and they are allowed to share information only with their

immediate neighbors. This kind of cooperation overcomes the aforementioned

disadvantages associated with centralized processing. Recent studies have
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shown the improved adaptation performance of distributed techniques as

compared with non-cooperatives agents and that they also offer an attractive

approach to dealing with such large data sets and cloud computing [1]-[18].

2.1.1
Distributed Sensor Networks

With the development of sensor technology and wireless networks, the

use of sensor networks has been a good solution for many applications such as

environmental monitoring, medicine and surveillance. The design of a sensor

network employs a geographical area where the nodes are spatially spread to

obtain and exchange information for a specific application.

Some factors to be taken into account for the design of a sensor network

are the fault tolerance, scalability, network topology, hardware constraints,

energy consumption, the application environment and production costs [2].

The integration of these aspects is very important to decide the communication

protocol and the algorithm to be implemented, and how to obtain the desired

information of the network.

For distributed processing over sensor networks several algorithms have

been used to process and obtain the information required by the desired

application. Some of the algorithms developed are the LMS [1]-[11], RLS [12],

[21] and CG [14], [15], [18]. These algorithms as well as some applications are

presented in the following sections.

2.1.2
Applications

Distributed sensor networks are of interest to the most diverse fields.

Some important applications are defense, education and agriculture. This sec-

tion is focussed on distributed parameter estimation and distributed spectrum

estimation applications, that are the applications considered in this work.

Distributed Estimation

A network consisting of N nodes distributed over a spatial domain has

a neighborhood for node k that is denoted by Nk. Figure 2.1 shows a network

with six nodes and the neighborhood of node k = 6 given by N6 = 2, 3, 6.

The main task in distributed estimation is to estimate the unknown

parameter vector ω0 of dimension M × 1, where M is the number of filter
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Figure 2.1 – Network model with 6 nodes and N6 neighborhood representation.

taps [1]. At each time i each node k can take measurements {dk,i,xk,i} of

random scalar dk,i and the M×1 input signal vector xk,i. The random processes

{dk,i,xk,i} are related to ω0 through the linear regression model given by

dk,i = ωH
0 xk,i + nk,i, (2-1)

where nk,i is the measurement noise with zero mean and variance σ2
n,k.

To obtain the MSE optimal solution at each node k we need to minimize the

cost function [1] given by

C(ωk,i) =
N∑
k=1

E[|dk,i − ωH
k,ixk,i|2], (2-2)

where E denotes expectation and ωk,i is the estimated vector generated by

node k at time instant i.

The minimization of the cost function (2-2) have been the goal of many

works to estimate the optimal parameter vector ω. With this purpose some

distributed adaptive algorithms such as LMS [6] [11] [29], RLS [21] [36] and

CG[15] have been proposed to achieve this goal.

Distributed Spectrum Estimation

Spectral estimation has become a very important task due to the poten-

tial of a better use of the frequency spectrum. In distributed processing the

goal in this application is to estimate over a sensor network with N nodes the

spectrum of a transmitted signal s [17] [31] [42]. The power spectral density

(PSD) of the signal s at each frequency denoted by Φs(f) is given by

Φs(f) =
B∑

m=1

bm(f)ω0m = bT0 (f)ω0, (2-3)

where b0(f) = [b1(f), ..., bB(f)]T is the vector of basis functions evalu-
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ated at frequency f , ω0 = [ω01, ..., ω0B] is a vector of weighting coefficients

representing the power that transmits the signal s over each basis, and B is

the number of basis functions. For B sufficiently large, the basis expansion in

(2-3) can approximate the frequency spectrum. Possible choices for the set of

basis functions bm(f)Bm=1 include: rectangular functions, raised cosines, Gaus-

sian bells and splines [17], [18], [31].

The channel transfer function between a transmit node conveying the

signal s and receive node k at time instant i is denoted by Hk(f, i), then the

PSD of the received signal observed by node k can be expressed as

Φk(f, i) = |Hk(f, i)|2Φs(f) + υ2n,k,

=
∑B

m=1 |Hk(f, i)|2bm(f)ω0m + υ2n,k,

= bTk,i(f)ω0 + υ2n,k.

(2-4)

where bTk,i(f) = [|Hk(f, i)|2bm(f)]Bm=1 and υ2n,k is the receiver noise power at

node k.

With the distributed model as reference, at every time instant i each

node k measures the PSD Φk(f, i) presented in (2-4) over Nc frequency samples

fj = fmin : (fmax−fmin)/Nc : fmax, for j = 1, ..., Nc, the desired signal is given

by

dk,i(j) = bTk,i(fj)ω0 + υ2n,k + nk,i(j). (2-5)

where the last term denotes the observation Gaussian noise with zero mean

and variance σ2
n,j. The receiver noise power υ2n,k can be estimated with high

accuracy in a preliminary step using, e.g., an energy estimator over an idle

band, and then subtracted from (2-5) [17]. A linear model is obtained from the

measurements over Nc contiguous channels:

dk,i = Bk,iω0 + nk,i, (2-6)

where Bk,i = [bTk,i(fj)]
Nc
j=1 ∈ <Nc×B, and nk,i is a zero mean random vector.

Then we can establish the cost function for each agent k

C(ωk,i) = E[|dk,i −Bk,iωk,i|2], (2-7)

The same analysis presented for distributed estimation is applied for spectrum

estimation and the global cost function is given by

C(ω) =
N∑
k=1

E[|dk,i −Bk,iω|2], (2-8)
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Distributed algorithms also have been proposed in several works to solve

this global cost function with the aim of obtaining the estimated frequency

spectrum. The most commonly used algorithm for this application is the least-

mean square (LMS) algorithm [17] and [31].

2.2
Distributed Network Models

In distributed connected networks there is always one path connecting

two nodes [1],[2] . The nodes may be connected directly by an edge if they

are neighbors, or they may be connected by a path that passes through other

intermediate nodes. Generally the networks are represented by graphs, vertices

and edges. In the following sections are presented some of the most known

connected network models and topologies are represented.

2.2.1
Weakly-Connected Network

A connected network model can be considered as weakly connected when

the paths with nonzero weight values can link two different nodes directly or

indirectly in at least one direction. When this occurs the information can flow

through the network at least in one direction between two agents [1]. Figure

2.2 below represents this kind of network.

1
2

3

4

5

6

7

Figure 2.2 – Weakly-connected network.

It can be seen in Figure 2.2 that node 6 is incapable of receiving

information from any other node. In contrast, node 6 can send information

to the other nodes directly to its neighbors or through intermediate nodes.
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2.2.2
Connected Network

The connected model classification is given when paths with nonzero

weight values are linking any two nodes. The linking connection must be in

both directions and can be directly or indirectly through another node [18].

In this model the information flows in both directions between any

two different agents of the network. The forward and backward paths to the

information flows can be the same or not.

2.2.3
Strongly-Connected network

A strongly-connected network is defined as a connected network previ-

ously defined and where all weight values of the self-loops of some agent are

positives [1][41]. Figure 2.3 represents this kind of network.

1
2

3

4

5

6

7

Figure 2.3 – Strongly-connected network.

For the information to flow between agents, it is not sufficient for paths

to exist linking these agents. It is also necessary that the connection remains

active due to zero scaling weight. The arrow represented in red for emphasis

in Figure 2.3 shows de difference between weakly and strongly connected

networks. The reversal connection between nodes 6 and 7 in Figure 2.3 as

compared with Figure 2.2 illustrates how node 6 can receive information from

any other node in the network directly or indirectly, and also can reach all other

agents in the same way. Our work is focused on strongly-connected networks.
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2.3
Distributed Strategies for Signal Processing

In distributed networks, besides the connection models there are several

connection topologies between nodes, as well as exchange protocols that regu-

late the communication flow. According to the connection topology distributed

networks can be fully or partially connected networks.

A fully or totally connected network is a network in which each of the

nodes is connected to every other node. In this kind of topology the number

of connections increase with the number of nodes [18] [41]. This feature can

represent a disadvantage in terms of resources and bandwidth. Figure 2.4 shows

and scheme of a fully connected network.

Figure 2.4 – Fully-connected network topology.

In partially connected networks the nodes only can exchange information

with neighbors determined by the connectivity topology [18] [41]. This topo-

logy shows benefits in terms of physical connections as compared with fully

connected networks. Our research is focused on partially connected networks.

Based on the communication strategy to exchange information between

nodes there are three protocols on distributed networks, incremental, consensus

and diffusion [1]. In the following sections we introduce and analyze these

strategies.

2.3.1
Incremental Strategy

The incremental protocol is a strategy where the communication flows

cyclically and the information is exchanged sequentially from one node to

another adjacent node. For this strategy the flow of information must be

preset at the beginning of the process, this means that the path to exchange

information between nodes must be defined before each agent starts to share

and update its status [5]. Once the path is defined the process begins, each node
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uses the information from its previous neighbor, updates its own information

and sends to the next node, as depicted in Figure 2.5 .

Figure 2.5 – Incremental strategy estimation.

In Figure 2.5 an example can be seen of an incremental protocol scheme

with 5 nodes, where agent 1 is referring to the start of the cyclic path and

agent N is associated to the end. The incremental calculations carried out by

agent k are given by.

ωk,i = ωk−1,i − µ∇̂ω∗Ck(ωk−1,i) (2-9)

Using the LMS algorithm the incremental update at each node is as follows:

ωk,i = ωk−1,i + µxk,i[dk,i − xHk,iωk−1,i]
∗ (2-10)

The incremental solution is a simple cooperation strategy, but suffers

some limitations. First, the incremental strategy is sensitive to agent or link

failures. If an agent or a link on the cyclical path fails, then the flow of

information through the network is interrupted. The cooperation between

agents is limited due to each agent only receives the data from the previous

agent and share its own only with the next one [26]. Another limitation is that

for each iteration i, it is necessary to perform N incremental steps.

2.3.2
Consensus Strategy

In the consensus protocol each node has the ability to run its update

simultaneously with the rest of the nodes. The parameter vector ωk−1,i on

the right side of equation (2-10) that represents an incremental factor from

the previous analyzed incremental strategy, is replaced by a combination of

previous iterations of the neighboring nodes. The second term of the equation

DBD
PUC-Rio - Certificação Digital Nº 1412775/CA



Chapter 2. Literature Review 23

is also replaced by the value of the parameter vector of previous iterations

already available in agent k.The consensus strategy imposes a mathematical

constraint so that all connected agents must converge to the same parameter

vector [18] [32] [35]. A representation of a connected network that is used for

the consensus strategy is illustrated in Figure 2.6.

Figure 2.6 – Distributed network scheme.

The general recursion for distributed consensus strategy of the LMS

algorithm is given by

ωk,i =
∑
l∈Nk

alkωl,i−1 − µ∇̂ω∗Ck(ωk,i−1), (2-11)

where alk represents the combining coefficients of the data fusion which should

comply with

akl ≥ 0
∑
lεNk

akl = 1, lεNk,i,∀k. (2-12)

Equation (2-12) means that for every agent k, the sum of the weights alk that

arrive at it from its neighbors is one. This value represents the weight that

agent k assigns to ωl,i−1 that receives from agent l. Matrix A is an N × N

matrix that contains alk scalar values. The sum of these scalar values at each

column is equal to one, which means that A is a left-stochastic matrix [1].

There are different rules to calculate the alk coefficients such as the

Metropolis and the Laplacian rules [7]. In this work we adopted the Metropolis

rule to compute the alk values, as given by

alk =


1

max{|Nk|,|Nl|}
if k 6= l are linked,

1−
∑

l∈Nk/k

alk, for k = l. (2-13)

The consensus protocol as compared with the incremental strategy does

not need to define the cycle and re-number the nodes for the information to
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flow, which is translated in a more efficient protocol.

2.3.3
Diffusion Strategy

In the diffusion mechanism, each node communicates with the rest of the

nodes of the network. The scheme of the connection topology, as well as the

consensus strategy is the same represented in Figure 2.6. There are two kinds

of diffusion protocols in distributed networks, the Combine-then-Adapt (CTA)

strategy and the Adapt-then-Combine (ATC) strategy [6].

Combine then Adapt (CTA)

The CTA strategy first involves a combination step, where it is first

evaluated into an intermediate state variable the influence of the neighborhood

data from the previous iteration to update its information. This intermediate

variable is then used to perform the weight update [26]. The general recursion

for this diffusion strategy variant using the LMS algorithm is described as

follows:

CTA


ϕk,i−1 =

∑
l∈Nk

alkωl,i−1, Combination,

ωk,i = ϕk,i−1 − µ∇̂ω∗Ck(ϕk,i−1), Adaptation,

(2-14)

where alk is the combiner coefficient obtained with the Metropolis rule using

equation (2-13) previously discussed in the distributed consensus strategy.

At each time instant i all the nodes of the network are performing the

combination and adaptation steps simultaneously. Using the LMS algorithm

this strategy has the same computational complexity as the consensus protocol

[1].

Adapt then Combine (ATC)

The ATC protocol is obtained by switching the order of the the CTA

variant. The adaptation step is performed first, and the parameter vector is

obtained from the previous value ωk,i−1 at each node. The second step performs

a combination of the previous adaptation step and the combiner coefficients

of the neighbors of each agent [26]. This strategy has been implemented using
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different adaptive algorithms such as RLS, affine projection (AP) and LMS

[34] [27] [26]. The recursion for the LMS algorithm at each node is given by

ATC


ϕk,i = ωk,i−1 − µ∇̂ω∗Ck(ωk,i−1), Adaptation,

ωk,i =
∑
l∈Nk

alkϕl,i, Combination. (2-15)

The coefficients of the combiner are also calculated with the Metropolis rule

of equation (2-13).

The ATC diffusion strategy incorporates the influence of the data from

the neighborhood of node k into the update of the parameter vector, which

influences the performance of the algorithms. Using the LMS algorithm it

has been demonstrated that the diffusion strategies in general outperform the

consensus protocol [26]. Specifically the ATC mechanism converges faster and

obtains lower MSD value at steady state than CTA and consensus strategies

[6]. When comparing both diffusion variants it is very important to take into

account that in CTA is computed an a priori error, in contrast in ATC is

computed an a posteriori error.

2.4
Adaptive Algorithms

Adaptive algorithms have been used for centralized and distributed signal

processing applications that require learning and tracking abilities to process

signals and extract information. Adaptive algorithms have the ability to learn

by observing the environment and are often guided by reference signals [18].

In distributed environments each node operates as an adaptive filter that

models the relationship between the input and the output signals, adjusting the

parameters according to the algorithm and the application field. The adaptive

algorithm and the cooperation strategy define the efficiency of the network to

update and obtain the desired parameters.

There are several adaptive algorithms, the most widely used for adaptive

signal processing is the least mean square (LMS) algorithm [18]. The recursive

least square (RLS) algorithm is another well-known method in adaptive

filtering that provides better convergence rate as compared with the LMS,

but it is more complex in terms of computational operations [43]. Another

algorithm that has been used for adaptive filtering is the conjugate gradient

(CG) algorithm that presents a better performance than the LMS in terms

of convergence rate and a lower computational complexity than the RLS, and
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also reaches a better stability [8]. These three algorithms are described in the

following subsections.

2.4.1
The Least-Mean Square (LMS) Algorithm

The LMS algorithm is a stochastic-gradient algorithm that aims to

minimize the following MSE cost function

CLMS(ωi) = E[|di − ωH
i xi|2], (2-16)

where di is the desired signal, xi is the input signal vector and the filter weight

vector is represented by ωi.The algorithm has useful tracking abilities and has

been used for many applications such as parameter and spectrum estimation

[1] and [17].

The optimum solution to be solved, known as the Wiener filter, is

described as

ω0 = R−1x bx, (2-17)

where Rx is the correlation matrix of the input signal x and bx is the

cross-correlation vector between the desired signal and the input signal,

and are calculated as E[xix
H
i ] and E[d∗ixi], respectively. These statistical

variables must be estimated [3]-[4]. The LMS algorithm adopts the simplest

instantaneous estimates of Rx and bx, given by

Rx = xix
H
i , (2-18)

bx = d∗ixi. (2-19)

By substituting equations (2-44) and (2-45) in the gradient vector of the

cost function we get

ωi = ωi−1 − µ∇ω∗C(ωi),

= ωi−1 + µxi[d
∗
i − xHi ωi−1],

(2-20)

where µ is the LMS step size. This parameter is related to the convergence

rate and the stability of the method, and the convergence is achieved when

0 < µ <
2

λmax
(2-21)
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where λmax is the largest eigenvalue of Rx.

2.4.2
The Recursive Least Squares (RLS) Algorithm

The RLS algorithm estimates the weights of the filter using the criterion

of least squares (LS). The cost function to be minimized is the quadratic error

described as

CRLS(ωi) =
i∑
l=0

λi−l|di − ωH
i xi|2. (2-22)

where λ is the forgetting factor that must be 0 << λ < 1. Usually the value

of the forgetting is very close to one [3]. The derivation process of the cost

function gives as result

∂CRLS(ωi)

∂ω∗i
=

i∑
l=0

λi−l[xix
H
i ωi − xidi]

∗ = 0. (2-23)

Separating the terms of equation (2-23) two terms can be defined as follows:

Φi =
i∑
l=0

λi−lxix
H
i , (2-24)

Θi =
i∑
l=0

λi−lxid
∗
i . (2-25)

Then equation (2-23) can be stated as

ωi = Φ−1i Θi. (2-26)

The recursive expressions for Φi and Θi are given by

Φi = λΦi−1 + xix
H
i , (2-27)

Θi = λΘi−1 + xid
∗
i . (2-28)

As can be seen in (2-26) it is necessary to use the matrix inversion lemma

for Φi as follows:

Φ−1i = λ−1Φ−1i−1 −
λ− 2Φ−1i−1xix

H
i Φ−1i−1

1 + λ−1xHi Φ−1i−1xi
. (2-29)
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From now on Φ−1i is represented by P i as follows

P i = Φ−1i , (2-30)

and we express the Kalman gain vector ki [3], given by

ki =
λ−1P i−1xi

1 + λ−1xHi P i−1xi
. (2-31)

Employing the Kalman gain vector equation in (2-31) we obtain

P i = λ−1P i−1 − λ−1kixHi P i−1. (2-32)

The Kalman gain vector can be reformulated as follows:

ki = λ−1P i−1xi − λ−1kixHi P i−1xi,

= (λ−1P i−1 − λ−1kixHi P i−1)xi,

= P ixi.

(2-33)

The general recursion for the RLS algorithm using equations (2-28), (2-

30) and (2-32) is given by

ωi = ωi−1 + P iΘi,

= ωi−1 − kix
H
i ωi−1 + P ixid

∗
i ,

= ωi−1 + ki[di − ωH
i−1xi]

∗,

(2-34)

where the term in brackets is the a priori estimation error.

2.4.3
The Conjugate Gradient (CG) Algorithm

The main task of the conjugate gradient (CG) algorithm in adaptive

processing is to compute the following linear equation [8][14]

Rω = b, (2-35)

where R and b as well as in previously discussed algorithms, are the instantan-

eous values of the correlation matrix and the cross-correlation vector, respec-

tively. The equation (2-35) is indirectly minimizing the global cost function of
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the CG method [33], given by

CCG(ω) =
1

2
ωHRω − bHω. (2-36)

To solve the cost function in (2-36) the CG algorithm initializes some

parameters as follows:

g0 = b, (2-37)

p0 = g0, (2-38)

where g is the residual of the gradient of the cost function, and p is the search

direction vector.

At each iteration j of the CG algorithm the residual vector must be

calculated in the negative direction of the gradient computing the Kyrlov

subspace methods [23], described as

g(j) = b−Rω(j) = −∇CCG(ω(j)), (2-39)

and the direction vector is given by

p(j) = g(j) + β(j)p(j − 1), (2-40)

where β is computed following the Gram-Schmidt orthogonalization procedure

[23] described as

β(j) =
gH(j)g(j)

gH(j − 1)g(j − 1)
. (2-41)

The update equation of the CG algorithm is obtained through different

operations as follows

ω(j) = ω(j − 1)− α(j)p(j), (2-42)

where α is the step size that minimizes the CG cost function presented in

(2-36), and is given by

α(j) =
gH(j − 1)g(j − 1)

pH(j)R(j)p(j)
. (2-43)

There are different ways to estimate R and b. In this work, we adopted

the exponentially decaying data window, where these parameters are calculated

as follows:

Ri = λRi−1 + xix
H
i , (2-44)
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bi = λbi−1 + d∗ixi. (2-45)

The modified CG algorithms (MCG) for adaptive signal processing have

been proposed in some works [8], [47] and [48]. The MCG algorithms have been

implemented to improve the performance of the conventional CG algorithm

from several applications leading to different results in terms of convergence

rate and error computation.

2.5
Sparsity-Aware Techniques

In the last years with the increasing amount of data that needs to be

processed a lot of research works have been focussed on sparse systems. Sparse

signals are characterized by the presence of many zero or negligible coefficients

[9]-[12]. In the presence of sparse signals, conventional adaptive algorithms

may exhibit poor performance as compared with its typical operation with

non-sparse systems. To solve this problem sparsity-aware techniques have been

proposed in the literature incorporating in the cost function of the adaptive

algorithm a penalty term to exploit sparsity.

Another method proposed for sparse signal processing is the oracle

algorithm, which can identify the position of the non-zero coefficients. This

algorithm is considered the optimal method for sparse systems [16].

The following subsections introduce and discuss three sparsity-aware

techniques, the Zero-Attracting (ZA) strategy, the Reweighted Zero-Attracting

(RZA) strategy and the l0-norm strategy. The update equation of each one of

these strategies is described as

ωnew = ωprevious + gradient recursion + zero atraction. (2-46)

To finalize the literature review the oracle algorithm is presented along

with its features.

2.5.1
The Zero-Attracting Strategy

The ZA technique incorporates into the cost function of the adaptive

algorithm a regularization term with the l1-norm. The goal of of this method

is to attract the filter coefficients to zero using a scalar factor ρ. The new cost

function for the ZA-LMS algorithm [10] is given by
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CZA-LMS(ωi) = E[|di − ωH
i xi|2] + ρf1(ωi), (2-47)

where f1 represents the ‖ωi‖1 penalty function.

The derivation process is the same as the standard LMS algorithm. The

derivative of the last term in (2-47) with respect to ωi is obtained as follows:

∂(f1)

∂(ω∗i )
= sgn(ωi) =

{
[ωi]m
|[ωi]m| , if [ωi]m 6= 0

0, if ωi = 0.
(2-48)

Using the equation (2-48), into the gradient updating of the LMS, we obtain

the recursion of the ZA-LMS algorithm given by

ωi = ωi−1 + µxi[d
∗
i − xHi ωi−1]− ρsgn(ωi−1). (2-49)

In many works it has been demonstrated how the ZA technique outperforms

the typical adaptive algorithms in presence of sparse signals [10]-[12], [16] [17]

[19] [21]. The zero attractor accelerates the convergence of the algorithm when

the majority of the coefficents are zero. With the increase in the number of

non-zero coefficients the algorithm tends to deteriorate its perfomance.

2.5.2
The Reweighted Zero-Attracting Strategy

By replacing the f1 penalty with the log-sum penalty in (2-47) it is

obtained the cost function for RZA-LMS algorithm as follows

CRZA-LMS(ωi) = E[|di − ωH
i xi|2] + ρ

M∑
m=1

log(1 + |ωi|/ε). (2-50)

To obtain the recursion of the RZA sparsity-aware LMS algorithm it is

necessary to differentiate the regularization term added in (2-50) with respect

to ω∗i , as shown below

f2 = ρ
M∑
m=1

log(1 +
|[ωi]m|
ε

), (2-51)

∂(f2)

∂(ω∗i )
=

sgn(ωi)

1 + ε|ωi|1
. (2-52)

The reweighted zero attractor term presented in (2-52) takes effect only

in coefficients whose magnitudes are comparable to 1/ε and there is a shrinkage
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exerted on the coefficients larger than 1/ε [10]. The update equation for this

technique is then calculated as

ωi = ωi−1 + µxi[d
∗
i − xHi ωi−1]− ρ

sgn(ωi)

1 + ε‖ωi−1‖1
. (2-53)

The RZA strategy has improved the performance as compared with

the ZA mechanism, due to the reweighted zero attractor and the selective

shrinkage. According to [10]-[12] a robust performance for non-sparse scenarios

is also obtained with the RZA strategy.

2.5.3
The l0-Norm Strategy

The l0 Norm constraint LMS algorithm has been proposed for adaptive

processing of sparse signals in non-cooperative environments and also in

distributed networks [17] and [40]. Similarly to the ZA and RZA techniques, the

l0 Norm has been implemented to accelerate the sparse system identification

task. In this case the penalty function is given by

f3 = ρ‖ωi‖0, (2-54)

where ‖.‖ is the l0 norm as indicates the name of the strategy. An approxim-

ation of the lo according to [40] is

‖ωi‖0 =
M−1∑
m=0

(1− e−β(ωi)), (2-55)

where β is the attractor parameter that equalizes both terms of the equation

as it tends to infinity. The cost function with the l0 norm incorporated is given

by

Cl0-LMS(ωi) = E[|di − ωH
i xi|2] + ρ

M−1∑
m=0

(1− e−β(ωi)). (2-56)

By minimizing the cost function the gradient recursion of (2-56) that represents

the update equation of this sparsity-aware technique is described as

ωi = ωi−1 + µxi[d
∗
i − xHi ωi−1]− µρβsgn(ωi−1)e

−β(ωi−1). (2-57)
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2.5.4
The Oracle Algorithm

The oracle algorithm, also developed to exploit sparse systems is able to

identify the non-zero positions of the parameter vector. The main goal of the

method is to minimize the cost function described by

Cor-LMS(P i,ωi) = E[|di − ωH
i P ixi|2], (2-58)

where P i is an M × M diagonal matrix that contains the positions of the

non-zero taps [16]. The output estimate d̂i is given by

d̂i = ωH
i P ixi. (2-59)

The oracle technique has been proposed using the LMS algorithm as

presented in (2-58) and the RLS algorithm [13]. This method significantly

outperforms the classical and the standard sparsity-aware adaptive algorithms

in terms of convergence rate and error computation. As part of our research in

chapter 5 a distributed method is presented to approach the oracle algorithm

for distributed parameter and spectrum estimation.
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3
Distributed Conjugate Gradient Algorithms

3.1
Introduction

In the last few years with the deployment of distributed networks for

parameter sensing, many adaptive algorithms have been used to obtain the de-

sired information. Least-mean square (LMS) and recursive least-squares (RLS)

type algorithms have been applied so far [1]-[9], [35]-[37]. These algorithms

have been reported using incremental, consensus and diffusion communica-

tion strategies [9]-[11],[35],[36]. The diffusion strategy has been more exploited

due to its better response in terms of convergence and mean square deviation

(MSD) and error (MSE) values at steady state.

The Conjugate Gradient (CG) algorithm is based on the CG method

[22] and also has been successfully applied for distributed processing [15],

[18]. Although the LMS-based algorithms are computationally simpler when

compared with conjugate gradient (CG) algorithms, the adaptation speed

is often slow, especially for the conventional LMS algorithm. Second, with

the increase of the adaptation speed, the system stability may decrease

significantly. The RLS-based algorithms usually have a high computational

complexity and are prone to numerical instability [18]. The CG algorithm,

often results in an algorithm of faster convergence than the LMS and with a

very close performance as compared to the RLS, that can also achieves better

numerical stability [14]. There are two well-known variants of CG algorithms,

the conventional CG (CCG) and the modified CG (MCG) algorithms [15].

In this chapter we propose distributed CG algorithms based on consensus

and two variants of diffusion strategies for parameter estimation over sensor

networks. Specifically, we develop a distributed standard and modified CG al-

gorithms using the consensus , ATC and CTA diffusion protocols.The proposed

algorithms are compared with recently reported algorithms in the literature.

The particular application presented in this paper is parameter estimation over

sensor networks, which can be found in many scenarios of practical interest

such as environmental monitoring and military defense.

DBD
PUC-Rio - Certificação Digital Nº 1412775/CA



Chapter 3. Distributed Conjugate Gradient Algorithms 35

3.2
System Model and Problem Statement

In this section, we describe the system model of the distributed estima-

tion scheme and introduce the problem statement.

The system model of the network consists of N nodes that exchange in-

formation between them, where each node represents an adaptive parameter

vector with neighborhood described by the set Nk. An strongly connected

network with partially topology is assume, where all nodes receive sensing

information (directly or indirectly) from the other agents depending on the

communication protocol [1], [18], [41]. The main task of the parameter estim-

ation problem is to adjust the M × 1 weight vector ωk of each node, where M

is the length of the filter [1]. The desired signal dk,i at each time i is a scalar

random process given by

dk,i = ωH
0 xk,i + nk,i, (3-1)

where ω0 is the M×1 system weight vector, xk,i is the M×1 input signal vector

and nk,i is the measurement noise. The output estimate is given by

yk,i = ωH
k,ixk,i. (3-2)

The main goal of the network is to minimize the following cost function:

C(ω) =
N∑
k=1

E[|dk,i − ωHxk,i|2]. (3-3)

By solving this minimization problem it is possible to obtain the optimum

solution of the weight vector at each node. The optimum solution at each node

is given by

ωk,i = R−1k,ibk,i, (3-4)

where Rk,i = E[xk,ix
H
k,i] is the M×M correlation matrix of the input data

vector xk,i, and bk,i = E[d∗k,ixk,i] is the M×1 cross-correlation vector between

the input data and dk,i. As usual in distributed estimation, we assume that

the optimum solutions ωk,i are the same across the the network (i.e., for all

k) [1]. In the following sections we focus on distributed CG algorithms to

minimize 3-3.
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3.3
Proposed Distributed Consensus CG Algorithm

In this section, we present the proposed distributed CG algorithm using

the consensus strategy. We first derive the CG algorithm and then consider

the consensus protocol.

3.3.1
Derivation of the CG algorithm

The CG method can be applied to adaptive filtering problems [14]. The

main objective in this task is to solve (3-4). The cost function for one agent,

say agent k is given by

CCG(ω) =
1

2
ωHRω − bHω. (3-5)

For distributed processing over sensor networks, we present the following

derivation. The CG algorithm does not need to compute an update to the

inverse of R, which is an advantage as compared with RLS-based algorithms.

Using the data window with an exponential decay, the resulting autocorrelation

matrix and cross-correlation vector use the forgetting factor λ, which is the

same as the forgetting factor of the RLS algorithm. They are defined as

Rk,i = λRk,i−1 + xk,ix
H
k,i, (3-6)

bk,i = λbk,i−1 + d∗k,ixk,i. (3-7)

For each time instant i, the CG computes the weights ωk,i for each

iteration j until convergence, i.e, ωk,i(j) [18]. The gradient of the method

in the negative direction is obtained as follows

gk,i(j) = bk,i −Rk,iωk,i(j) = −∇CCG(ωk,i(j)), (3-8)

Calculating the Krylov subspace [22] through different operations, the recur-

sion is given by

ωk,i(j) = ωk,i(j − 1)− α(j)pk,i(j), (3-9)

where p is the conjugate direction vector of g and α is the step size that min-

imizes the cost function in (3-5) by replacing (3-8) in (3-4). Both parameters

are calculated as follows:

α(j) =
gHk,i(j − 1)gk,i(j − 1)

pHk,i(j)Rk,i(j)pk,i(j)
, (3-10)
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pk,i(j) = gk,i(j) + β(j)pk,i(j − 1). (3-11)

The parameter β is calculated using the Gram-Schmidt orthogonalization

procedure [23] as given by

β(j) =
gHk,i(j)gk,i(j)

gHk,i(j − 1)gk,i(j − 1)
. (3-12)

Applying the CG method to a distributed network the cost function is

expressed based on the information exchanged between all nodes k = 1, 2..., N .

Each of the equations presented so far takes place at each agent during the

iterations of the CG algorithm. Therefore, we have the global cost function:

CCG(ω) =
1

2

N∑
k=1

ωHRk,iω − bHk,iω. (3-13)

3.3.2
Consensus Conjugate Gradient.

In the consensus strategy, all nodes interact with their neighbors sharing

and reaching agreement about the system parameter vector. Each node k is

able to run its update simultaneously with the other agents [1][6]. Figure

3.1 illustrates the distributed network scheme for consensus and diffusion

strategies.

Figure 3.1 – Distributed connected network processing.

There is a cooperation factor in consensus that is a convex combination

of the iterations available at the neighborhood of agent k. This combination is

then updated with the previous value of the node. This mechanism performs

the adaptation and learning at the same time [1].

The consensus cooperation strategy imposes a mathematical constraint

so that all connected agents converge same weight ωk,i parameter vector. It

means that this protocol demands the equality of the estimates within the

network [28]. The optimization problem that involves the cost function of the
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distributed CG algorithm with the consensus strategy is given by

min CCG(ωk,i) =
1

2

N∑
k=1

ωH
k,iRk,iωk,i − bHk,iωk,i,

s.t ωk = ωl, l = 1, 2, ..., k, l ∈ Nk.

(3-14)

Based on this constraint it is necessary to apply the method of Lagrange

Multipliers for the network wise equality [28], as follows:

L(ωk, λ) =
1

2

N∑
k=1

ωH
k,iRk,iωk,i − bHk,iωk,i + λ(ωk − ωl), l ∈ Nk. (3-15)

To obtain the recursion for updating the parameter vector and the

associated Lagrange Multipliers it is necessary to apply the derivation process

to the cost function. The derivative of the equations after some operations are

given by

∇ω∗L(ωk, λ) = ∇ω∗
1

2

N∑
k=1

ωH
k,iRk,iωk,i − bHk,iωk,i + λ(ωk − ωl) = 0, l ∈ Nk,

=
N∑
k=1

Rk,iωk,i − bk,i + λ,

(3-16)

∇λ∗L(ωk, λ) = ∇λ∗
1

2

N∑
k=1

ωH
k,iRk,iωk,i − bHk,iωk,i + λ(ωk,i − ωl,i) = 0, l ∈ Nk,

=
N∑
k=1

ωk,i − ωl,i, l ∈ Nk.

(3-17)

According to the discrete CG algorithm in (3-9) and to the distributed

consensus algorithm [37], we have

ωk,i(j) = ωk,i(j − 1) + λ
∑
l∈Nk

(ωk,i−1 − ωl,i−1). (3-18)

Following the steps of conjugate gradient presented from (3-5) to (3-12) and

taking into account the constraint in (3-14), we obtain the recursion given by

ωk,i(j) = ωk,i(j − 1) + α(j)[pk,i(j) + λ
∑
l∈Nk

(ωk,i−1 − ωl,i−1)], (3-19)
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where 0 < λ < 1 and the last terms in the bracket are set to enforce equality.

A number of methods have been proposed in the literature [28][38][39],

based on the Alternating Direction Method of Multipliers (ADMM) for con-

sensus strategy. For consensus-distributed algorithms the combination step is

based on the connectivity among nodes, where the local estimation is given by

ϕk,i−1 =
∑
lεNk

aklωl,i−1, (3-20)

where akl represents the link among the nodes and should comply with∑
lεNk

akl = 1, lεNk,i,∀k. (3-21)

In this work the strategy adopted for the akl combiner is the Metropolis rule

[1] given by

akl =


1

max{|Nk|,|Nl|}
if k 6= l are linked,

1−
∑

l∈Nk/k

akl, for k = l. (3-22)

where the N×N matrix A that contains the akl values must be left stochastic,

with the sum of the terms of each column equal to one (AT1 = 1).

The proposed distributed Consensus CG algorithm based on the deriv-

ation steps obtains the updated weight substituting (3-20) in (3-9), resulting

in

ωk,i(j) = ϕk,i−1(j) + αk,i(j)pk,i(j). (3-23)

The pseudo code of the proposed distributed conventional consensus CG

algorithm is presented bellow in Table 3.1.

3.3.3
Distributed Consensus MCG Algorithm

The Modified CG (MCG) algorithm comes from the conventional CG

algorithm previously presented. This version is proposed to have just one

iteration per coefficient update [14]. For this version the residual is calculated

using (3-6), (3-8) and (3-9):

gk,i = bk,i−Rk,iϕk,i = λgk,i−1−αk,iRk,ipk,i−1 +xk,i[dk,i−ωH
k,i−1xk,i]. (3-24)
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Table 3.1 – Consensus CG Algorithm

Parameter initialization:
ωk,0 = 0, Rk,0 = δI, bk,0 = 0,...
For each time instant i > 0

For each agent k=1,2, . . . , N
ϕk,i−1 =

∑
lεNk

alkωl,i−1
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i
gk,i(0) = bk,i −Rk,iωk,i−1
pk,i(0) = gk,i(0)
For each CG iteration j = 1 until convergence

αk,i(j) =
gH
k,i(j−1)gk,i(j−1)

pH
k,i(j)Rk,i(j)pk,i(j)

ωk,i(j) = ϕk,i−1(j)− αk,i(j)pk,i(j − 1)
gk,i(j) = gk,i(j − 1)− αk,i(j)Rk,i(j)pk,i(j − 1)

β(j) =
gH
k,i(j)gk,i(j)

gH
k,i(j−1)gk,i(j−1)

pk,i(j) = gk,i(j) + β(j)pk,i(j − 1)
End For
ωk,i = ωk,i(jlast)

End for
End for

The previous equation (3-24) is multiplied by the search direction vector:

pHk,igk,i = λpHk,igk,i−1 − αk,ipHk,iRk,ipk,i−1 + pHk,ixk,i[dk,i − ωH
k,i−1xk,i]. (3-25)

Applying the expected value to both sides, considering pk,i−1 uncorrelated with

xk,i, dk,i and ϕk,i, and that the algorithm converges, the last term of (3-25)

can be neglected. The line search to compute α has to satisfy the convergence

bound [14] given by

E[αk,i] ∈
E[pHk,i−1gk,i]

E[pHk,i−1Rk,ipk,i−1]
[λ− 0.5, 1] , (3-26)

αk,i = η
pHk,igk,i

pHk,iRk,ipk,i
, (3-27)

where (λ− 0.5) ≤ η ≤ λ. The Polak-Ribiere method [14] for the computation

of β is given by

βk,i =
(gk,i − gk,i−1)

Hgk,i
gHk,igk,i

, (3-28)

and should be used for better performance. Table 3.2 shows the details of the

MCG algorithm for consensus strategy taking into account the considerations

previously discussed.
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Table 3.2 – Consensus MCG Algorithm

Parameter initialization:
ωk,0 = 0, Rk,0 = δI, gk,0 = b, pk,1 = gk,0,...
For each time instant i > 0

For each agent k=1,2, . . . , N
ϕl,i−1 =

∑
lεNk

alkωl,i−1
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i
gk, 1 = bk,0
pk, 1 = gk,1

αk,i = η
pH
k,igk,i

pH
k,iRk,ipk,i

, (λ− 0.5) ≤ η ≤ λ

ωk,i = ϕl,i−1 − αk,ipk,i
gk,i = λgk,i − αk,iRk,ipk,i−1 + xk,i[dk,i − ωH

k,i−1xk,i]

βk,i =
(gk,i−gk,i−1)

Hgk,i

gH
k,i−1gk,i−1

pk,i = gk,i + βk,ipk,i−1
End For

End for

3.4
Proposed Distributed Diffusion Conjugate Gradient.

In diffusion protocols there are two well-known variants that differ in

the choice of the output variable (which can be either the output of the

combination or of the adaptation steps). The variants are named Combine

then-Adapt (CTA) and Adapt-then-Combine (ATC). Both perform adaptation

and learning at the same time [1] [6] and the main difference between them

is the point in the recursions where the error is measured. These two variants

are presented in this section. We first introduce the diffusion conventional and

then the modified CG versions.

3.4.1
CTA Distributed CG Algorithm

In the CTA variant of diffusion strategy we first evaluate the convex

combination term into an intermediate state variable ϕk,i−1 and subsequently

use it to perform the weight update [1] as follows:

ϕk,i−i =
∑
lεNk

alkωl,i−1, (3-29)
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This combination is employed then to estimate the weight at each node k:

ωk,i(j) = ωk,i(j − 1) + αk,i(j)pk,i(j), (3-30)

where ωk,i(0) = ϕk,i [15]. The rest of the derivation is similar to the Consensus-

CG solution and the pseudo-code is detailed in Table 3.3.

Table 3.3 – CTA CG Algorithm

Parameter initialization:
ωk,0 = 0, Rk,0 = δI, bk,0 = 0,...
For each time instant i > 0

For each agent k=1,2, . . . , N
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i
ϕk,i =

∑
lεNk

alkωl,i−1
ωk,i(0) = ϕk,i

gk,i(0) = bk,i(0)−Rk,i(0)ωk,i−1
pk,i(0) = gk,i(0)
For each CG iteration j = 1 until convergence

α(j) =
gH
k,i(j−1)gk,i(j−1)

pH
k,i(j)Rk,i(j)pk,i(j)

ωk,i(j) = ωk,i(j − 1)− α(j)pk,i(j)
gk,i(j) = gk,i(j − 1)− α(j)Rk,i(j)pk,i(j − 1)

β(j) =
gH
k,i(j)gk,i(j)

gH
k,i(j−1)gk,i(j−1)

pk,i(j) = gk,i(j) + β(j)pk,i(j − 1)
End For
ωk,i = ωk,i(jlast)

End for
End for

The MCG version for the CTA strategy is very similar to the ATC

strategy proposed, but follows slightly different steps. It takes into account the

parameters in (3-25),(3-27) and (3-28) presented in the previous section. In

this case, we substitute the term ωH
k,i by ϕH

k,i−1 in (3-25). The implementation

of the strategy is shown below in Table 3.4.

As its name indicates and the details in Table 3.4, the CTA strategy first

involves a combination step and then an adaptation step [6].

3.4.2
ATC Distributed CG Algorithm

In the ATC protocol, the adaptation step is the fisrt one, that is obtained

from the previous value ωk,i−1 at each node [1][6]. All other agents in the

network perform a similar step simultaneously and update their parameters
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Table 3.4 – CTA MCG Algorithm

Parameters initialization:
ωk,0 = 0, Rk,0 = δI, gk,0 = b, pk,1 = gk,0,...
For each time instant i > 0

For each agent k=1,2, . . . , N
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i
ϕk,i−1 =

∑
lεNk

alkωl,i−1
ωk,i(j) = ϕk,i

αk,i = η
pH
k,igk,i

pH
k,iRk,ipk,i

, (λ− 0.5) ≤ η ≤ λ

ωk,i = ωk,i−1 − αk,ipk,i
gk,i = λgk,i − αk,iRk,ipk,i−1 + xk,i[dk,i −ϕH

k,i−1xk,i]

βk,i =
(gk,i−gk,i−1)

Hgk,i

gH
k,i−1gk,i−1

pk,i = gk,i + βk,ipk,i−1
End for

End for

through the CG iterations j.

ωk,i(j) = ωk,i(j − 1)− α(j)pk,i(j),

ϕk,i = ωk,i(jlast).
(3-31)

The second step is the convex combination of the adaptation from the

neighbors of each agent after all j iterations, is given by

ωk,i =
∑
lεNk

alkϕl,i. (3-32)

Table 3.5 shows the pseudo code for the ATC strategy.

The MCG version for the ATC strategy is very similar to the CTA version

presented, but performs its particular tasks. Table 3.6 shows the details of the

ATC MCG algorithm.
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Table 3.5 – ATC CG Algorithm

Parameter initialization:
ωk,0 = 0, Rk,0 = δI, bk,0 = 0
For each time instant i > 0

For each agent k=1,2, . . . , N
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i
gk,i(0) = bk,i(0)−Rk,i(0)ωk,i−1(0)
pk,i(0) = gk,i(0)
For each CG iteration j = 1 until convergence

α(j) =
gH
k,i(j−1)gk,i(j−1)

pH
k,i(j)Rk,i(j)pk,i(j)

ωk,i(j) = ωk,i(j − 1)− α(j)pk,i(j)
gk,i(j) = gk,i(j − 1)− α(j)Rk,i(j)pk,i(j − 1)

β(j) =
gH
k,i(j)gk,i(j)

gH
k,i(j−1)gk,i(j−1)

pk,i(j + 1) = gk,i(j) + β(j)pk,i(j)
End For
ϕk,i = ωk,i(jlast)
ωk,i =

∑
lεNk

alkϕl,i

End for
End for

Table 3.6 – ATC MCG Algorithm

Parameter initialization:
ωk,0 = 0, Rk,0 = δI, gk,0 = b, pk,1 = gk,0,...
For each time instant i > 0

For each agent k=1,2, . . . , N
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i

αk,i = η
pH
k,igk,i

pH
k,iRk,ipk,i

, (λ− 0.5) ≤ η ≤ λ

ϕk,i = ωk,i−1 − αk,ipk,i
gk,i = λgk,i−1 − αk,iRk,ipk,i−1

+xk,i[dk,i − ωH
k,i−1xk,i]

βk,i =
(gk,i−gk,i−1)

Hgk,i

gH
k,i−1gk,i−1

pk,i = gk,i + βk,ipk,i−1
End for
ωk,i =

∑
lεNk

alkϕl,i

End for

3.5
Computational Complexity

The proposed consensus as well as diffusion CG methods have a quadratic

computational cost and depend on the number of nodes connected and the CG
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iterations.

Table 3.7 shows the computational complexity of all presented methods

in terms of additions and multiplications. J is the maximum number of CG

iterations and L is the number of linked nodes.

Table 3.7 – Computational Complexity of Distributed CG Algorithms

Method Additions Multiplications
Consensus-CG 3LM + LJ(M2 + 4M − 2) L(2M2 + 2M)

+LJ(3M2 + 2M)
CTA-CG L(M2 + 2M) L(2M2 + 4M)

+LJ(2M2 + 6M − 3) +LJ(3M2 + 4M − 1)
ATC-CG L(M2 + 3M − 1) L(2M2 + 3M)

+LJ(M2 + 6M − 3) +LJ(3M2 + 4M − 1)
Consensus-MCG L(M2 + 7M − 2) L(4M2 + 4M)

CTA-MCG L(3M2 + 9M − 4) L(4M2 + 9M − 1)
ATC-MCG L(4M2 + 9M − 3) L(6M2 + 8M − 1)

It can be seen that the complexity of the modified versions is lower than

the conventional methods for J > 1. The conjugate gradient method has a

lower computational complexity as compared with the RLS algorithm.

3.6
Simulations Results

In this section, we evaluated the proposed distributed consensus and

diffusion CG algorithms and compare them with existing algorithms. The

results are based on the mean square deviation (MSD) of the network. We

consider a network with 20 nodes and 1000 iterations per run. Each iteration

corresponds to a time instant. The results are averaged over 100 experiments.

The length of the filter is 10 and the input signal, a complex Gaussian noise,

has unit variance. The SNR is 30 dB.

3.6.1
Comparison between consensus and diffusion distributed CG algorithms

The system parameter vector was randomly set. After all the iterations,

the performance of each algorithm in terms of MSD is shown in Figure 3.2.
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Figure 3.2 – MSD of the network for distributed Consensus-CG,CTA-CG and
ATC-CG algorithms with λ = 0.99, δ = 10−2, JCCG = 5, SNR=30dB.

The results show that the diffusion strategies outperform the consensus

version. Specifically, the best results are obtained for the ATC variant in terms

of convergence and MSD value at steady state.

3.6.2
Comparison between consensus and diffusion distributed MCG algorithms

Generally the MCG algorithms have a better performance than the

standard ones because they have the ability to perform the estimation at

each time instant, without the CG internal iterations of the conventional

method. Figure 4.3 presents the MSD curve for modified variants of distributed

CG algorithm. We also illustrate the MSD curve for comparison between

Consensus-CG, Consensus-MCG, ATC-CG and ATC-MCG in Figure 3.3.
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Figure 3.3 – MSD of the network for distributed Consensus-MCG, CTA-MCG
and ATC-MCG algorithms with λ = 0.99, δ = 10−2.
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Figure 3.4 – MSD of the network for distributed Consensus-CG, Consensus-
MCG, ATC-MCG and ATC-MCG algorithms with λ = 0.99, δ = 10−2,
JCCG = 5.

From figures 3.3 and 3.4 the MCG algorithm performs better than the

conventional CG (CCG). Specifically, the ATC strategy achieves the lowest

MSD value and has a faster convergence as compared with consensus and
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CTA protocols. Figure 3.5 bellow shows a comparison between the proposed

distributed CG and MCG algorithms and the well-known LMS and RLS

algorithms, all of them using the ATC strategy. In terms of stability the MCG

also outperform the the RLS algorithm.
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Figure 3.5 – MSD of the network for distributed ATC-CG, ATC-MCG, ATC-
LMS and ATC-RLS algorithms with λ = 0.99, δ = 10−3, JCCG = 5,
µLMS = 0.035.

3.7
Summary

In this chapter we have proposed distributed consensus and diffsuion

CG algorithms for parameter estimation over sensor networks. The proposed

distributed CG algorithms have a faster convergence than the LMS and a very

similar performance to the RLS, specifically the diffusion ATC MCG algorithm.

Simulation results have shown that the developed methods can be used for

adaptive parameter estimation and can be employed in other applications.

Due to the conditions of sparse parameter vectors, will be presented in the

next chapter the development of these methods exploiting sparsity.
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4
Distributed Sparsity-Aware Conjugate Gradient Algorithms

4.1
Introduction

A sparse system is defined as a system whose impulse response contains

many zero or near-zero coefficients and only a few large ones. This kind of

system exists in many applications, such as Digital TV transmission where

channels can be considered sparse because of the presence of only a few

dominant multipaths [40] [45]. Sparse systems also can be found in image

processing, especially in images that only have a few nonzero pixel values [46].

Sensor measurements in wireless sensor networks and industrial applications

also exhibit certain levels of sparsity.

In the last years many algorithms have been developed to exploit the

sparse nature of systems to improve their performance [10]-[12]. Distributed

strategies also have been developed in the literature for sparse systems [9],[16]-

[19],[40], most of them using LMS-based algorithms. In distributed approaches,

the nodes exchange information locally and cooperate with each other without

the need for a central processor. The information is processed by all nodes

and the data diffuse across the network by means of a real-time sharing mech-

anism. These sparsity-aware algorithms locate and track non-zero coefficients

introducing a convex penalty term into the cost function to favor sparsity [9].

Some of the penalty functions that have been used for sparse systems include

an approximation of the l0-norm [12],[40], the l1- norm penalty [12],[16] and

the log-sum penalty [9],[11],[16].

The l1 penalty function results in a modified update step with a zero

attractor for all the coefficients, for that reason it is called the Zero-Attracting

(ZA) strategy. Then, the Reweighted Zero-Attracting (RZA), which uses the

log-sum penalty function, employs reweighted step sizes of the zero attractor

for different coefficients, inducing the attractor to selectively promote zero

coefficients rather than uniformly promote zeros on all the coefficients[18].

In order to improve the performance of distributed CG-based methods,

typical metrics of sparse systems are presented and integrated into the cost
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function of the CG algorithm. Building on the work described in the previ-

ous chapter we propose distributed sparsity-aware CG algorithms based on

the consensus and diffusion strategies for parameter estimation over sensor

networks. Specifically, we develop sparsity-aware CG algorithms using l1 and

log-sum penalty functions. The proposed algorithms are compared with re-

cently reported sparsity-aware algorithms in the literature. The application

scenario is parameter estimation over sensor networks.

4.2
Sparse Distributed Estimation Model and Problem Statement

We consider diffusion and consensus strategies for a network where each

agent k has access at each time instant to a realization of zero-mean spatial

data {dk,i,xk,i}[19]-[25], as described by

dk,i = ωH
0 xk,i + nk,i, (4-1)

where ω0 is the M×1 system weight vector, xk,i is the M×1 input signal vector

and nk,i is the measurement noise.

For a network with possibly sparse parameter vectors, the cost function

also involves a penalty function which exploits sparsity. In this case the network

needs to solve the following optimization problem:

min C(ω) =
∑N

k=1
E[|dk,i − ωHxk,i|2] + f(ω), (4-2)

where f(ωk,i) is a penalty function that exploits the sparsity in the parameter

vector ωk,i. In the following sections we focus on distributed diffusion CG

algorithms to solve (4-2).

4.3
Proposed Sparsity-Aware Distributed Consensus CG

Based on the previous study of distributed CG algorithm presented in

chapter 3, the following description presents the general strategy of distributed

sparsity-aware consensus CG algorithms using l1 (ZA) and log-sum (RZA)

norm penalty functions.

These two techniques were chosen to evaluated its performance using the CG

algorithm, as it have been done with other adaptive algorithms like LMS and

RLS reported in [10]-[14].
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4.3.1
ZA and RZA Consensus CG algorithms

The cost function in this case is given by

CCG(ω) = 1
2

∑N
k=1ω

HRk,iω − bHk,iω + f1(ω)

subject to. ωk = ωl, l = 1, 2, ..., k, l ∈ Nk,
(4-3)

where f1 denotes the l1 penalty function (ZA) and is defined by

f1 = ρ‖ωk,i(j)‖1. (4-4)

Applying the partial derivative of the penalty function with respect to the

parameter vector ω∗k,i gives

∂(f1)

∂(ω∗k,i)
= sgn(ωk,i) =

{
[ωk,i]m
|[ωk,i]m|

, if [ωk,i]m 6= 0,

0, if [ωk,i] = 0,
(4-5)

where [x]m is the m-th entry of x.

When instead of the f1 function, the logarithmic penalty function f2 is

used in the cost function, we obtain

CCG(ω) =
1

2

N∑
k=1

ωHRk,iω − bHk,iω + ρ
M∑
i=1

log(1 + |ω|/ε), (4-6)

The partial derivative of the penalty function with respect to ω∗k,i is given by

f2 = ρ

M∑
m=1

log(1 +
|[ωk,i]m|

ε
), (4-7)

∂(f2)

∂(ω∗k,i)
=

sgn(ωk,i)

1 + ε‖ωk,i‖1
. (4-8)

In both cases the sparsity-aware algorithms attract to zero the values of

the parameter vector which are very small or are not useful. This results in

algorithms with faster convergence and lower MSD values as can be seen in the

following sections. Using equations (4-5) and (4-8), we obtain sparsity-aware

algorithms with distributed strategies. Table 4.1 shows the pseudocode of

the sparsity-aware algorithms for the consensus protocol. The same steps are

applied for ZA and RZA methods, where the main difference lies in the chosen

penalty function.
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Table 4.1 – Sparsity-Aware Consensus CG Algorithm

Parameters initialization:
ωk,0 = 0, Rk,0 = δI, bk,0 = 0
For each time instant i > 0

For each agent k=1,2, . . . , N
ϕk,i−1 =

∑
lεNk

alkωl,i−1
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i
gk, i(0) = bk,i(0)−Rk,i(0)ωk,i−1(0)
pk, i(0) = gk,i(0)
For each CG iteration j = 1 until convergence

α(j) =
gH
k,i(j−1)gk,i(j−1)

pH
k,i(j)Rk,i(j)pk,i(j)

ωk,i(j) = ϕk,i − α(j)pk,i(j − 1)
gk,i(j) = gk,i(j)− α(j)Rk,i(j)pk,i(j − 1)

β(j) =
gH
k,i(j)gk,i(j)

gH
k,i(j−1)gk,i(j−1)

pk,i(j + 1) = gk,i(j) + β(j)pk,i(j)
End For

ωk,i = ωk,i(jlast)− ρ∂(f1,2)∂ω∗
k,i

End for
End for

4.3.2
ZA and RZA Consensus MCG algorithm

The sparsity-aware versions for the Consensus MCG algorithm follow the

steps explained of the Consensus MCG algorithm in subsection 3.3.3, including

the penalty functions (4-4) or (4-7) in the cost function given by

L(ωk,i, λ) =
1

2

N∑
k=1

ωH
k,iRk,iωk,i−bHk,iωk,i+λ(ωk−ωl)+f1,2(ωk,i), l ∈ Nk, (4-9)

The derivatives of the cost functions of the ZA and RZA consensus algorithms

with respect to ωk,i are obtained as follows:

∇ω∗,λL(ωk,i, λ) =
N∑
k=1

Rk,iωk,i − bk,i + λ(ωk,i − ωl,i)− ρsgn(ωk,i), (4-10)

∇ω∗,λL(ωk,i, λ) =
N∑
k=1

Rk,iωk,i − bk,i + λ(ωk,i − ωl,i)− ρ
sgn(ωk,i)

1 + ε‖ωk,i‖1
. (4-11)

As a result of the derivation process the penalty functions of the ZA and

RZA methods are incorporated in the general recursions of consensus the CG
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algorithms given by

ωk,i(j) = ϕk,i−1(j) + αk,i(j)pk,i(j)− ρsgn(ωk,i), (4-12)

ωk,i(j) = ϕk,i−1(j) + αk,i(j)pk,i(j)− ρ
sgn(ωk,i)

1 + ε‖ωk,i‖1
, (4-13)

where ϕk,i−1 is the local estimation that represents the connection between the

nodes of the networks and their weights, described as

ϕk,i−1 =
∑
lεNk

aklωl,i−1. (4-14)

Equations (4-12) and (4-13) correspond to ZA and RZA parameter vector

ωk,i updates, respectively. The residual and the direction vectors are obtained

as follows:

gk,i = bk,i−Rk,iϕk,i = λgk,i−1−αk,iRk,ipk,i−1 +xk,i[dk,i−ωH
k,i−1xk,i]. (4-15)

pHk,igk,i = λpHk,igk,i−1 − αk,ipHk,iRk,ipk,i−1 + pHk,ixk,i[dk,i − ωH
k,i−1xk,i]. (4-16)

Applying the expected value to equation (4-16), the direction vector pk,i−1 is

considered uncorrelated with xk,i, dk,i and ϕk,i, then the last term of (4-16)

can be neglected. The line search to compute α has to satisfy the convergence

bound [14] given by

E[αk,i] ∈
E[pHk,i−1gk,i]

E[pHk,i−1Rk,ipk,i−1]
[λ− 0.5, 1] , (4-17)

αk,i = η
pHk,igk,i

pHk,iRk,ipk,i
, (λ− 0.5) ≤ η ≤ λ. (4-18)

The Polak-Ribiere method [14] for the computation of β is given by

βk,i =
(gk,i − gk,i−1)

Hgk,i
gHk,igk,i

, (4-19)

The main idea of the sparsity-aware consensus MCG algorithm is to

obtain better convergence performance and lower MSD value at steady state

as compared with previously reported consensus MCG. The pseudo-code is

shown below in Table 4.2.
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Table 4.2 – ZA and RZA Consensus MCG Algorithm

Parameters initialization:
ωk,0 = 0, Rk,0 = δI, gk,0 = b, pk,1 = gk,0,...
For each time instant i > 0

For each agent k=1,2, . . . , N
ϕl,i−1 =

∑
lεNk

alkωl,i−1
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i
gk, 1 = bk,0
pk, 1 = gk,1

αk,i = η
pH
k,igk,i

pH
k,iRk,ipk,i

, (λ− 0.5) ≤ η ≤ λ

ωk,i = ϕl,i−1 − αk,ipk,i − ρ
∂(f1,2)

∂ω∗
k,i

gk,i = λgk,i − αk,iRk,ipk,i−1 + xk,i[dk,i − ωH
k,i−1xk,i]

βk,i =
(gk,i−gk,i−1)

Hgk,i

gH
k,i−1gk,i−1

pk,i = gk,i + βk,ipk,i−1
End For

End for

4.4
Proposed Sparsity-Aware Distributed Diffusion CG

Similar to the equation (4-3), but without the consensus constraint we

can obtain the cost function for the sparsity-aware CG algorithms using the

diffusion strategy, given by

CCG(ωk,i) =
1

2

N∑
k=1

ωH
k,iRk,iωk,i − bHk,iωk,i + f1,2(ωk,i). (4-20)

The gradient of the method in the negative direction includes a new term

due to de addition f1 and f2, respectively, and is obtained as follows:

gk,i(j) = bk,i −Rk,iωk,i(j)− ρsgn(ωk,i) = −∇CCG(ωk,i), (4-21)

gk,i(j) = bk,i−Rk,iωk,i(j)−ρ
sgn(ωk,i)

1 + ε‖ωk,i‖1
= −∇CCG(ωk,i). (4-22)

Calculating the Krylov subspace [22] through different operations and

using the penalty functions of equations (4-4) and (4-7), the recursion of the
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parameter vector is given by

ωk,i(j) = ωk,i(j − 1)− α(j)pk,i(j)− ρ
∂(f1,2)

∂ω∗k,i
. (4-23)

The step size α, the direction vector pk,i and β parameter still remain with

the MCG computations [22] [23] as follows:

α(j) =
gHk,i(j − 1)gk,i(j − 1)

pHk,i(j)Rk,i(j)pk,i(j)
, (4-24)

pk,i(j) = gk,i(j) + β(j)pk,i(j), (4-25)

β(j) =
gHk,i(j)gk,i(j)

gHk,i(j − 1)gk,i(j − 1)
. (4-26)

The update equations of CTA and ATC sparsity-aware CG as result of

the derivation process are described as follows

CTA diffusion


ϕk,i−1 =

∑
lεNk

alkωl,i−1

ωk,i(0) = ϕk,i−1

ωk,i(j) = ωk,i(j − 1)− α(j)pk,i(j)− ρ
∂(f1,2)

∂ω∗
k,i

(4-27)

ATC diffusion


ωk,i(j) = ωk,i(j − 1)− α(j)pk,i(j)

ϕk,i =
∑

lεNk
alkωl,i(jlast)

ωk,i = ϕk,i − ρ
∂(f1,2)

∂ω∗
k,i
.

(4-28)

These sparsity-aware methods result in algorithms with faster convergence and

lower MSD values as can be seen in the simulations in the following sections.

4.4.1
ZA and RZA Diffusion CG Algorithms

In both CTA and ATC variants the same steps presented in Section 4.3.1

for f1 and f2 are carried out, including their derivatives on the typical steps

of each strategy. Tables 4.3 and 4.4 shows the sparsity-aware method for CTA

and ATC strategies, respectively.
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Table 4.3 – Sparsity-Aware CTA CG Algorithm

Parameter initialization:
ωk,0 = 0, Rk,0 = δI, bk,0 = 0,...
For each time instant i > 0

For each agent k=1,2, . . . , N
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i
ϕk,i =

∑
lεNk

alkωl,i−1
ωk,i(0) = ϕk,i

gk,i(0) = bk,i(0)−Rk,i(0)ωk,i−1
pk,i(0) = gk,i(0)
For each CG iteration j = 1 until convergence

α(j) =
gH
k,i(j−1)gk,i(j−1)

pH
k,i(j)Rk,i(j)pk,i(j)

ωk,i(j) = ωk,i(j − 1)− α(j)pk,i(j)
gk,i(j) = gk,i(j − 1)− α(j)Rk,i(j)pk,i(j − 1)

β(j) =
gH
k,i(j)gk,i(j)

gH
k,i(j−1)gk,i(j−1)

pk,i(j) = gk,i(j) + β(j)pk,i(j − 1)
End For

ωk,i = ωk,i(jlast)− ρ∂(f1,2)∂ω∗
k,i

End for
End for

Table 4.4 – Sparsity-Aware ATC CG Algorithm

Parameters initialization:
ωk,0 = 0, Rk,0 = δI, bk,0 = 0
For each time instant i > 0

For each agent k=1,2, . . . , N
Rk,i = λRk,i−1 + xk,ix

H
k,i

bk,i = λbk,i−1 + d∗k,ixk,i
gk, i(0) = bk,i(0)−Rk,i(0)ωk,i−1(0)
pk, i(0) = gk,i(0)
For each CG iteration j = 1 until convergence

α(j) =
gH
k,i(j−1)gk,i(j−1)

pH
k,i(j)Rk,i(j)pk,i(j)

ωk,i(j) = ωk,i(j − 1)− α(j)pk,i(j)
gk,i(j) = gk,i(j)− α(j)Rk,i(j)pk,i(j − 1)

β(j) =
gH
k,i(j)gk,i(j)

gH
k,i(j−1)gk,i(j−1)

pk,i(j + 1) = gk,i(j) + β(j)pk,i(j)
End For

ωk,i =
∑

lεNk
alkωl,i(jlast)− ρ∂(f1,2)∂ω∗

k,i

End for
End for
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4.4.2
ZA and RZA Diffusion MCG Algorithms

For scenarios with several negligible weight values among a few large

coefficients we developed the modified version of the CG algorithm for CTA

and ATC protocols. Tables 4.5 and 4.6 show the main steps for both strategies.

The ATC and CTA MCG algorithms are very similar as presented in the

previous section, including the penalty functions. In the ATC strategy, the

generation of the first state resulting from the adaptation step is used in the

final update.

Table 4.5 – Sparsity-Aware CTA MCG Algorithm

ϕk,i−1 =
∑

lεNk
alkωl,i−1

ωk,1 = ϕk,0

αk,i = η
pH
k,igk,i

pH
k,iRk,ipk,i

, λ− 0.5 ≤ η ≤ λ

ωk,i = ωk,i−1 − αk,ipk,i − ρ
∂(f1,2)

∂ω∗
k,i

gk,i = λgk,i − αk,iRk,ipk,i−1 + xk,i[dk,i −ϕH
k,i−1xk,i]

βk,i =
(gk,i−gk,i−1)

Hgk,i

gH
k,i−1gk,i−1

pk,i = gk,i + βk,ipk,i−1

Table 4.6 – Sparsity-Aware ATC MCG Algorithm

αk,i = η
pH
k,igk,i

pH
k,iRk,ipk,i

, λ− 0.5 ≤ η ≤ λ

ϕk,i = ωk,i−1 − αk,ipk,i
gk,i = λgk,i − αk,iRk,ipk,i−1 + xk,i[dk,i − ωH

k,i−1xk,i]

βk,i =
(gk,i−gk,i−1)

Hgk,i

gH
k,i−1gk,i−1

pk,i = gk,i + βk,ipk,i−1
ωk,i =

∑
lεNk

alkϕl,i − ρ
∂(f1,2)

∂ω∗
k,i

4.5
Computational Complexity

The computational complexity of the sparsity-aware proposed algorithms

is shown on Table 4.7 in terms of additions and multiplications. Sparsity-

aware CG versions have a similar computational complexity in terms of

multiplications. The same situation applies for sparsity-aware MCG versions.

The number of arithmetic operations of the modified versions are considerably

lower than conventional variants. This occurs mainly due to the fact that the

modified methods do not contain the CG internal iterations.
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Table 4.7 – Computational Complexity of Sparsity-Aware Distributed CG
Algorithms

Method Additions Multiplications
ZA-Consensus-CG 3LM + LJ(M2 + 4M − 2) L(M2 + 2M)

+LJ(3M2 + 3M)
ZA-CTA-CG L(M2 + 3M) L(2M2 + 5M)

+LJ(2M2 + 6M − 3) +LJ(3M2 + 4M − 1)
ZA-ATC-CG L(M2 + 4M − 1) L(2M2 + 4M)

+LJ(M2 + 6M − 3) +LJ(3M2 + 4M − 1)
RZA-Consensus-CG 3LM + LJ(M2 + 3M − 1) L(M2 + 2M)

+LJ(3M2 + 3M)
RZA-CTA-CG L(M2 + 2M) L(2M2 + 4M)

+LJ(2M2 + 8M − 3) +LJ(3M2 + 6M − 1)
RZA-ATC-CG L(M2 + 3M − 1) L(2M2 + 3M)

+LJ(M2 + 8M − 3) +LJ(3M2 + 6M − 1)
ZA-Consensus-MCG L(M2 + 7M)− 2 L(4M2 + 5M)

ZA-CTA-MCG L(3M2 + 10M − 4) L(4M2 + 10M − 1)
ZA-ATC-MCG L(4M2 + 10M − 3) (6M2 + 9M − 1)

RZA-Consensus-MCG L(M2 + 6M − 1) L(4M2 + 5M)
RZA-CTA-MCG L(3M2 + 11M − 4) L(4M2 + 11M − 1)
RZA-ATC-MCG L(4M2 + 11M − 3) L(6M2 + 10M − 1)

Establishing a comparison between sparsity-aware CG algorithms and

non-sparse CG algorithms as proposed in the previous chapter, it can be

appreciated that sparsity-aware versions add a few terms on the operations,

but the level of the complexity is still in the same order O(M2) for all protocols.

Specifically the RZA Consensus MCG represents the simplest method with a

few less terms, but remains with a quadratic order as the other variants, and

requires the storage of the same amount of data.

4.6
Simulations Results

In this section we evaluate the proposed standard sparsity-aware

distributed conventional and modified CG algorithms. The results are based

on the mean square deviation (MSD) of the network. We also present the res-

ults compared with sparsity-aware distributed LMS and RLS algorithms. We

consider a network with 20 nodes and 1000 iterations per run. Each iteration

corresponds to a time instant. The results are averaged over 50 experiments.

The length of the filter is 10 and the variance of the input signal 1, which has

been modeled as a complex Gaussian noise with a variance of 0.001.
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4.6.1
Comparison between sparsity-aware distributed CG algorithms

Two entries are set to one and the remaining values are set to zero,

giving a sparsity level of 2/10. After all the iterations, the performance of all

consensus and diffusion sparsity-aware methods in terms of MSD is shown in

the following figures.

The results in figures 4.1, 4.2 and 4.3 show that the sparsity-aware

versions outperform the standard versions and the best results are obtained

for the RZA versions. At the same time the MCG algorithms have a better

performance than the standard ones.
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Figure 4.1 – MSD of the network for distributed consensus standard and
sparsity-aware CG versions with λ = 0.99, ρZA = 0.5 × 10−4, ε = 0.1,
ρRZA = 0.2 × 10−3, δ = 10−2, JCCG = 5, S = 2/10. For modified versions
λ = 0.95, η = 0.55, ρZA = 0.5× 10−4, ε = 0.1, ρRZA = 0.2× 10−3.
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Figure 4.2 – MSD of the network for distributed CTA standard and sparsity-
aware CG versions with λ = 0.99, ρZA = 0.5 × 10−4, ε = 0.1, ρRZA = 10−3,
δ = 10−2, JCCG = 5, S = 2/10. For modified versions λ = 0.95, η = 0.55,
ρZA = 0.7× 10−4, ε = 0.1, ρRZA = 0.2× 10−3.
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Figure 4.3 – MSD of the network for distributed ATC standard and sparsity-
aware CG versions with λ = 0.99, ρZA = 0.5×10−4, ε = 0.1, ρRZA = 0.9×10−3,
δ = 10−2, JCCG = 5, S = 2/10. For modified versions λ = 0.95, η = 0.55,
ρZA = 0.2× 10−4, ε = 0.1, ρRZA = 0.2× 10−3.
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It can be observed that the RZA-ATC-MCG algorithm has a faster con-

vergence and a lower MSD value as compared to ZA-ATC-MCG, CTA-MCG

and consensus sparsity-aware strategies. Due to the reweighted regulariza-

tion the RZA-ATC-MCG outperforms the ZA-ATC-MCG. In general, diffusion

strategies outperform consensus approaches because they are able to include

additional information into their processing steps generating an intermediate

variable, that latter is used in the final update. Regarding the comparison

between consensus and diffusion, it is also known that diffusion gives freedom

to the adaptation and consensus forces the algorithms to converge to a com-

mon parameter vector. In CTA and ATC variants the order of the steps plays

an important roll on the performance of the algorithm.

4.6.2
Comparison between different sparsity levels

Different sparsity levels S were considered for the proposed algorithms.

Figure 4.4 shows the MSD behavior of the RZA-ATC-MCG algorithm for

different values of S.
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Figure 4.4 – MSD of the network for distributed RZA-ATC-MCG with λ =
0.95, η = 0.55, ρZA = 0.2× 10−4, ε = 0.1, ρRZA = 0.2× 10−3.

It can be noticed in Figure 4.4 that if the number of nonzero values is

increased the algorithm will take longer to converge and the deviation will be

larger as compared to a sparse system with a lower number of nonzero values.
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4.6.3
Comparison between sparsity-aware distributed MCG and RLS algorithms

The proposed algorithms were also compared with the distributed ver-

sions of the RLS algorithm. Figure 4.5 shows the MSD of a network where the

RZA diffusion RLS [12] and MCG version were tested.
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Figure 4.5 – MSD of the network number for consensus and distributed
diffusion RZA CG versions with λCons = 0.99, ρConsensus = 0.5×10−3, ε = 0.1,
δ = 10−1, λCTA = 0.99, ρCTA = 0.2 × 10−3, ε = 0.1, γ = 10−2, λATC = 0.99,
ρATC = 0.3 × 10−3, ε = 0.1, δ = 10−1, η = 0.55, s = 2/10, λRLS = 0.98,
ρRLS = 0.5× 10−4, ε = 0.1, δ = 10−2.

4.7
Summary

In this chapter we have proposed sparsity-aware distributed CG al-

gorithms for parameter estimation. As well as in chapter 3 the diffusion CG

algorithms, in this case exploiting sparsity, outperform consensus strategy. In

all cases, the modified versions obtained the lowest MSD values and fastest

convergence rates. The MCG algorithm with diffusion protocols has a very

close performance to the RLS algorithm in terms of convergence rate. Simu-

lations have shown that the proposed distributed CG algorithms are suitable

techniques for adaptive parameter estimation in presence of sparse systems.
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5
Distributed Estimation Based on Alternating Mixed Discrete-
Continuous Adaptation

5.1
Introduction

Many studies have shown that exploiting the sparsity of a system is

beneficial to enhancing the performance of a signal processing algorithm [1].

Most of the studies developed for distributed processing exploiting sparsity

focus on the least-mean square (LMS), recursive least-squares (RLS) and

conjugate gradient (CG) algorithms using different penalty functions [9]-[12],

[16]-[19]. These penalty functions perform a regularization that attracts to zero

the coefficients of the parameter vector that are close to zero. The most well-

known and popular penalty functions are the l0-norm, the l1-norm and the

log-sum [9], [10].

The optimal algorithm for processing sparse signals and systems is known

as the oracle algorithm[16]. It can identify the positions of the non-zero

coefficients and fully exploit the sparsity of the system under consideration.

The oracle algorithm also requires the computation of the optimal filter, which

is a continuous optimization problem [19].

With the development and increasing deployment of mobile networks

the frequency spectrum for the transmission of information has become a

resource that should be exploited in a wise way to avoid signal interference.

By spectral estimation in sensor networks this resource can be planned and

properly exploited.

Diffusion adaptation strategies incorporating sparsity constraints have

been used to solve distributed spectrum estimation problems in [17][18]. Prior

work on distributed oracle method is rather limited and techniques that exploit

possible sparsity of the signals using discrete and continuous variables have not

been developed so far.

In this chapter we propose a DAMDC-LMS algorithm based on alternat-

ing and mixed optimization of continuous and discrete values. Specifically,we

develop distributed LMS algorithms using the diffusion ATC protocol. The
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proposed method is compared with recently reported algorithms in the lit-

erature. The application scenarios in this work are parameter estimation and

spectrum estimation over sensor networks, which are fields of practical interest

nowadays.

This chapter is organized as follows. Section 5.2 describes the system

model and the problem statement. Section 5.3 presents the proposed DAMDC-

LMS algorithm. Section 5.4 details the proposed algorithm for an application to

spectrum estimation. Section 5.5 presents and discusses the simulation results.

Finally, Section 5.6 gives the conclusions of this chapter.

5.2
System Model and Problem Statement

In this section, is presented the distributed estimation model that we

followed. The network scheme and the problem statement are established.

5.2.1
System Model

The network model is the same of the previously developed algorithms. It

is necessary to estimate the parameter vector ωk of each node and the desired

signal dk,i at each node is obtained as presented in previous chapters. The

output estimate is given by

d̂k,i = ωH
k,iP k,ixk,i = pTk,iW

∗
k,ixk,i,

= xTk,iW
∗
k,ipk,i = xTk,iP k,iω

∗
k,i,

(5-1)

where W k,i = diag(ωk,i). P k,i is a square diagonal matrix of M elements

that is applied to the input vector xk,i and is supposed to perform the oracle

algorithm by identifying the null positions of the parameter vector.

The main goal of the network is to minimize the following cost function:

C(P ,ω) =
N∑
k=1

E[|dk,i − d̂k,i|2]. (5-2)

By solving this minimization problem it is possible to obtain the optimum

solution of the weight vector at each node.
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5.2.2
Problem Statement

For a network with possibly sparse parameter vectors, the cost function

also involves a penalty function which exploits sparsity. In this case the network

needs to solve the following optimization problem:

min C(P k,i,ωk,i) =
N∑
k=1

E[|dk,i − ωH
k,iP k,ixk,i|2]. (5-3)

In the following sections we focus on a novel distributed diffusion approach to

the oracle algorithm to solve (5-3).

5.3
Proposed DAMDC-LMS Algorithm

In this section, we present the proposed distributed scheme algorithm

using the diffusion strategy. We first detail the proposed algorithm and then

consider its combination with the diffusion protocol.

5.3.1
Derivation of the DAMDC-LMS algorithm

The proposed scheme for each agent k of the network is shown below in

Figure 5.1. To obtain the recursion for P i and ωi it is necessary to compute the

stochastic gradient of both parameters, where the optimization of P i involves

discrete variables and ωi deals with continuous variables. Our goal is to update

the system parameter vector ωi regardless of the adaptive algorithm. In this

work we develop an alternating optimization approach using an LMS type

algorithm that consists of a recursion for P i and another recursion for ωi.

Figure 5.1 – Proposed scheme and adapting algorithm.
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The first adaptive parameter matrix P i is a symmetric matrix that is

applied to xi input data vector and is a diagonal matrix of the column vector

pi. This matrix aims to approach the oracle algorithm by identifying the

null positions of the parameter vector. The second adaptive parameter vector

ωi is a column vector of M coefficients that typically performs the system

identification.

In order to compute P k,i and ωk,i we must solve the mixed discrete-

continuous non-convex optimization problem:

pok,i,ω
o
k,i = minpk,i∈IM×1,ωk,i∈CM×1C(pk,i,ωk,i), for k = 1, 2, ..., N. (5-4)

where

C(pk,i,ωk,i) =
N∑
k=1

E[|dk,i − pTk,iW
H
k,ixk,i|2], (5-5)

IM×1 corresponds to an M-dimensional space of the discrete values 0 and 1.

Since the problem in (5-4) is NP-hard, we resort to an approach that assumes

pk,i is a real-valued continuous parameter vector for its computation and then

map pk,i to discrete values. The relations in (5-1) allow us to compute the

gradient of the cost function with respect to pk,i and ωk,i and their diagonal

versions P k,i and W k,i, respectively.

The gradient of the cost function is then given by

∇pi
C(pi,ωi) = ∂

∂pi
(E|di|2 − (pTi W

∗
iE[d∗ixi])

−E[dix
H
i ]W ipi + pT iW ∗

iE[xix
H
i W ipi]).

(5-6)

Replacing the expected values with instantaneous values, we obtain

∇̂pi
C(pi,ωi) = ∂

∂pi
(|di|2 − (pTi W

∗
i [d
∗
ixi])

−[dix
H
i ]W ipi + pTi W

∗
i [xix

H
i W ipi]).

(5-7)

Computing the gradient of the cost function with respect pi, we obtain

∇̂pi
C(pi,ωi) = d∗iW

∗
ixi− diW T

i x
∗
i

+W ∗
ixix

H
i W ipi + W T

i x
∗ixTi W

H
i pi.

(5-8)

Grouping common terms, we arrive at

∇̂pi
C(pi,ωi) = −([di − xHi W (i)pi]W ixi

+[di − xTi W
H
i pi]W

T
i x
∗
i ),

(5-9)
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where pi is a real parameter vector, pi = p∗i , p
H
i = [(p∗i )]

T = pTi . The transpose

of the diagonal matrix W i is equal to the original one, i.e., W T
i = W i, then

WH
i = [W ∗

i ]
T = [W T

i ]∗ = W ∗
i . The terms in (5-9) represent the sum of one

vector and its conjugate:

∇̂pi
C(pi,ωi) = −([di − xHi W ipi]W

∗
ixi︸ ︷︷ ︸

A

+ [di − xTi W
H
i pi]W ix

∗
i )︸ ︷︷ ︸

A∗

.
(5-10)

Applying the property A+ A∗ = 2<(A), we have

∇̂pi
MSE(pi,ωi) = 2<(A). (5-11)

The recursion to update the parameter vector pi is given by

pi+1 = pi − η∇̂pi
MSE(pi,W i), (5-12)

pi+1 = pi + 2η<(e∗piW
H
i xi), (5-13)

where ep is an error signal of the vector p, given by

epi = di − pTi W i−1xi. (5-14)

For the parameter vector update, we can apply well-known adaptive al-

gorithms like LMS, conjugate gradient and recursive least-squares. By com-

puting the gradient of the cost function with respect to w∗i , we have

∇̂Cw∗
i
(pi,wi) = (di − xTi P iω

∗
i−1)

∗P ixi. (5-15)

The following LMS type recursion updates the parameter vector ωi as

described by

ωi+1 = ωi + µe∗iP ixi, (5-16)

where the error signal is given by ei = di − xTi P iω
∗
i−1.

5.3.2
Diffusion DAMDC-LMS algorithm

Based on the previous derivation steps we develop the proposed algorithm

for a distributed environment using a diffusion strategy, where all the agents

of the network perform similar steps to update their weights [10].
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The recursions for pk,i and ωk,i using the diffusion ATC variant are given

by

pk,i+1 = pk,i + 2η<(e∗pk,ix
H
k,iW k,i), (5-17)

ϕk,i = ωk,i−1 + µe∗k,iP k,ixk,i, (5-18)

ωk,i =
∑
l∈Nk

alkϕl,i, (5-19)

where (5-17) and (5-18) are the adaptation steps, and (5-19) the combination

step of the ATC protocol.

The strategy adopted, as in previous chapters, for the alk combiner, is

the Metropolis rule [1].

In order to devise the discrete vector pk,i at each node the initial value

is an all-one (pk,0 = 1 or P k,0 = I). The parameter vector is initialized as all-

zero vector (ωk,0 = 0 or W k,0 = 0). At each iteration the vector pk,i assumes

different values at each position m, [p0k,i, p
1
k,i, ..., p

M−1
k,i ], which are generally

measured around 1. To obtain the discrete values to approach the oracle

algorithm, we adopted the following rule:

pmk,i+1 =

{
1, if pmk,i > 1,

0, otherwise.
(5-20)

where 1 is the treshold used to determine the position of the non zero values

of the parameter vector. The goal is to obtain with this rule the oracle vector

pk,i.

5.4
Distributed Spectrum Estimation using DAMDC-LMS Algorithm

In distributed spectrum estimation, we aim to estimate the spectrum of

a transmitted signal s with N nodes using a wireless sensor network [18]. The

power spectral density (PSD) of the signal s at each frequency denoted by

Φs(f) is given by

Φs(f) =
B∑

m=1

bm(f)ω0m = bT0 (f)ω0, (5-21)

where b0(f) = [b1(f), ..., bB(f)]T is the vector of basis functions evaluated at

frequency f , ω0 = [ω01, ..., ω0B] is a vector of weighting coefficients representing

the power that transmits the signal s over each basis, and B is the number

of basis functions. For B sufficiently large, the basis expansion in (5-21) can
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well approximate the frequency spectrum. Possible choices for the set of basis

functions bm(f)Bm=1 include: rectangular functions, raised cosines, Gaussian

bells and splines [17], [18].

The channel transfer function between a transmit node conveying the

signal s and receive node k at time instant i is denoted by Hk(f, i), then the

PSD of the received signal observed by node k can be expressed as

Φk(f, i) = |Hk(f, i)|2Φs(f) + υ2n,k,

=
∑B

m=1 |Hk(f, i)|2bm(f)ω0m + υ2n,k,

= bTk,i(f)ω0m + υ2n,k,

(5-22)

where bTk,i(f) = [|Hk(f, i)|2bm(f)]Bm=1 and υ2n,k is the receiver noise power at

node k.

Following the distributed model, at every iteration i every node k

measures the PSD Φk(f, i) presented in (5-22) over Nc frequency samples

fj = fmin : (fmax − fmin)/Nc : fmax, for j = 1, ..., Nc, the desired signal is

given by

dk,i(j) = bTk,i(fj)ω0 + υ2n,k + nk,i(j), (5-23)

where the last term denotes the observation Gaussian noise with zero mean

and variance σ2
n,j. The receiver noise power υ2n,k can be estimated with high

accuracy in a preliminary step using, e.g., an energy estimator over an idle

band, and then subtracted from (5-23) [18]. A linear model is obtained from

the measurements over Nc contiguous channels:

dk,i = Bk,iω0 + nk,i, (5-24)

where Bk,i = [bTk,i(fj)]
Nc
j=1 ∈ <Nc×B, and nk,i is a zero mean random vector.

Then we can establish the global cost function, given by

C(ω) = E[|dk,i −Bk,iω|2]. (5-25)

Once we have the cost function, the AMDC-LMS algorithm can be

developed by introducing the discrete parameter vector pk,i in (5-25), which

results in the following cost function:

C(ω) = E[|dk,i −Bk,iP k,iω|2], (5-26)

where P k,i is the B × B diagonal matrix to exploit the sparsity for a more

accurate spectrum estimation. Introducing the matrix P k,i term for sparsity
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in recursions (5-17), (5-18), (5-19) we obtain

Adaptation

{
pk,i+1 = pk,i + 2η<(e∗pk,iB

H
k,iW k,i−1),

ϕk,i+1 = ωk,i−1 + µe∗k,iP k,iBk,i,
(5-27)

Combination
{

ωk,i =
∑

l∈Nk
alkP l,iϕl,i. (5-28)

Once pk,i is obtained, the rule in (5-20) is applied to obtain de discrete values

0 and 1. The position in the vector with ones (1) indicates the information

content of the signal at each node and entry of xk,i. With this method it is

possible to achieve a similar behavior to the oracle algorithm identifying after

a few iterations the positions of the non-zero coefficients of the sparse system.

5.5
Simulation Results

In this section, we evaluate the performance of the proposed DAMDC-

LMS algorithm in two scenarios: distributed estimation and distributed spec-

trum estimation in wireless sensor networks. DAMDC-LMS is also compared

with existing algorithms. The results are based on the mean square deviation

(MSD) and power spectrum density estimation of the network.

5.5.1
Distributed Estimation

In this scenario, we consider a network with 20 nodes and 1000 iterations

per run. Each iteration corresponds to a time instant. The results are averaged

over 100 experiments. The length of the filter is 20 and the input signal,

a complex white Gaussian noise, with zero mean unit variance. Different

scenarios were tested to evaluate the MSD of the algorithm as compared

with others. The system parameter vector was randomly set with two values

different from zero. The SNR is set to 30dB. After all the iterations, the

performance of each algorithm in terms of MSD is shown in Figure 5.2. The

results show that the proposed DAMDC algorithm outperforms the standard

version as well as sparsity-aware RZA versions, and has a close performance

to the oracle algorithm.

For an SNR equal to 40dB maintaining the parameter vector with two

values different from zero all the algorithms take more time to converge.

The DAMDC algorithm achieves also lower MSD than conventional and RZA

versions. Figure 5.3 shows how increasing the SNR both DAMDC and oracle
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Figure 5.2 – MSD of the network for distributed ATC standard, RZA, oracle
and DAMDC-LMS algorithms with µ = 0.45, η = 10−6, ρRZA = 5 × 10−4,
ε = 0.1, SNR = 30dB, S = 2/20.

algorithms obtain a considerable difference compared with the standard and

sparse RZA versions.
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Figure 5.3 – MSD of the network for distributed ATC standard, RZA, oracle
and DAMDC-LMS algorithms with µ = 0.45, η = 10−6, ρRZA = 5 × 10−4,
ε = 0.1, SNR = 40dB, S = 2/20.

The DAMDC algorithm was evaluated modifying the sparsity of the

system. For a system with 10 values different from zeros the DAMDC algorithm
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achieves the performance shown in Figure 5.4. In this case the DAMDC

algorithm still with a very close performance to the oracle method but takes

more time to converge. In general as well as the previous sparsity-aware

algorithms, the DAMDC has a better performance for fewer non zero values

of the parameter vector.
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Figure 5.4 – MSD of the network for distributed ATC standard, RZA, oracle
and DAMDC-LMS algorithms with µ = 0.45, η = 10−6, ρRZA = 5 × 10−4,
ε = 0.1, SNR = 40dB, S = 10/20.

To evaluate the performance of the proposed technique in Figure 5.5 we

also simulated the behavior of the steady-state network Mean Square Deviation

(MSD), obtained at convergence by different algorithms, versus the signal to

noise ratio (SNR). In this case the SNR was evaluated from 0 to 30 dB.

Values are obtained by averaging over 10 independent experiments and over 200

time samples after convergence. The simulation considers all the parameters

defined in the previous scenario. As can be seen in Figure 5.3, the estimation

performance gets worse as the SNR decreases. Since the parameter vector to be

estimated is sufficiently sparse (i.e., 2/20)and the SNR increases, the DAMDC-

LMS leads to similar performance as the oracle algorithm.
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Figure 5.5 – MSD vs SNR, for different ATC-LMS algorithms.

5.5.2
Distributed Spectrum Estimation

In this scenario, we also consider a network of 20 nodes estimating the

MSD and the unknown spectrum ω0. The nodes scan 100 frequencies over

the frequency axis, which is normalized between 0 and 1, and use B = 50

non−overlapping rectangular basis functions to model the expansion of the

spectrum [29]. The basis functions have amplitude equal to one. Different

values of sparsity were set to evaluate the behaviour of the MSD for spectrum

estimation. For a sparsity equal to 20/50 we have obtained the performance

shown below in Figure 5.6.
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Figure 5.6 – MSD of the network for distributed spectrum estimation, µ = 0.45,
η = 0.5 × 10−3, ρRZA = 3 × 10−5, ρl0 = 3 × 10−5, ε = 0.1,SNR = 30dB,
S = 20/50.

A better performance is obtained for a low sparsity ratio with 8 non zero

values. Figure 5.7 as well as Figure 5.6 have shown the faster convergence of

the algorithms for spectrum estimation as compared to parameter estimation

scenario.
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Figure 5.7 – MSD of the network for distributed spectrum estimation, µ = 0.45,
η = 0.5 × 10−3, ρRZA = 3 × 10−5, ρl0 = 3 × 10−5 ε = 0.1, SNR = 30dB,
S = 8/50.
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For the spectrum estimation we assumed that the unknown spectrum

ω0 was obtained over 8 basis functions, thus leading to a sparsity ratio equal

to 8/50. The power transmitted over each basis function is set equal to 0.7

mW . The variance for the observation noise is 0.001. For distributed spectrum

estimation, we compared the DAMDC, the distributed oracle, l0-ATC-LMS

[12], the RZA-ATC-LMS algorithm [9] and the standard distributed ATC-LMS

algorithms, all of them with the ATC diffusion strategy. Figure 5.8 shows the

result of the distributed spectrum estimation of the algorithms discussed. It

can be observed that the DAMDC algorithm is able to estimate the spectrum

and strongly reduces the effect of the spurious terms, fitting much better the

transmitted spectrum and rejecting the unused frequencies.
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Figure 5.8 – Distributed spectrum estimation. Parameters: µ = 0.45, η =
0.5× 10−3, ρl0 = 3× 10−5, β = 50 and S = 8/50.

To simulate the adaptation capability of the proposed technique, in

Figure 5.9 we evaluated the behavior of the power estimated over an initially

busy channel (the 16-th channel in this case), which ceases after iteration

500, comparing the results achieved by the DAMDC diffusion and the oracle

diffusion LMS algorithms. We consider the same settings of the previous

simulation. The transmitted power is set equal to 0.20 mW . We can notice

how the proposed DAMDC algorithm is able to track the spectrum in an

efficient and similar way compare to the oracle algorithm, due to its faster

learning capability than existing algorithms.
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Figure 5.9 – Power spectrum tracking.

5.6
Summary

In this chapter we have proposed a distributed algorithm for parameter

and spectrum estimation over sensor networks. The proposed DAMDC-LMS

algorithm outperforms previously sparsity-aware algorithms like RZA and ZA

that use a penalty function to attract to zero the small magnitudes of the

parameter vector. In all cases, the DAMDC obtained lower MSD values and

faster convergence rates as compared to prior art and which is similar to the

oracle algorithm. Simulations have shown that DAMDC-LMS is also suitable

for spectrum estimation techniques. By exploiting sparsity and alternating

optimization recursions to find the optimal parameter vector to transmit the

signal, the DAMDC algorithm is able to improve the spectrum estimation

performance and adaptation capability, with respect to the existing sparsity-

aware and standard diffusion algorithms.
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6
Conclusions and Future Work

In this work we have proposed distributed sparsity-aware algorithms

for signal processing in sensor networks. Parameter estimation and spectrum

estimation were the application scenarios chosen to evaluate the proposed

algorithms. The proposed algorithms outperform some of the already reported

algorithms in previous works in terms of MSD and convergence rate.

In chapter 3 distributed consensus and diffusion CG algorithms for

parameter estimation have been presented. The proposed distributed CG

algorithms have a faster convergence than the LMS and a very similar

performance to the RLS. The diffusion ATC MCG algorithm have shown the

best performance achieving the lowest MSD value at steady state with the

fastest convergence rate.

We have demonstrated in chapter 4 that sparsity-aware techniques for

distributed CG algorithms are appropriated tools for parameter estimation in

sparse scenarios. The RZA diffusion ATC-MCG algorithm presents the best

performance in terms of convergence rate an MSD value. All proposed sparsity-

aware mechanisms outperform the distributed sparsity-aware LMS algorithms

and have shown a close performance to the sparsity-aware RLS algorithms.

Chapters 3 and 4 have shown that diffusion strategies outperform the

consensus protocol for CG and MCG algorithms. Specifically the diffusion ATC

protocol have presented the best performance. The constraint of the consensus

strategy forces the algorithm to converge to a common parameter vector. In

contrast, the diffusion protocol gives freedom to the adaptation process, which

influences the performance of the method. At the same time the order of the

steps also has an effect over the performance of the algorithm.

In chapter 5 we have proposed a distributed algorithm, DAMDC-LMS,

that approaches the oracle algorithms for parameter and spectrum estimation

over sensor networks. The new proposal has obtained lower MSD values and

faster convergence rates as compared to prior art sparsity-aware, classical

algorithms and a similar behavior to the oracle algorithm. The alternating

process between continuous and discrete values enables the DAMDC-LMS

algorithm to identify the positions with useful values in the parameter vector.
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The DAMDC-LMS algorithm has also shown good capabilities for tracking

and spectrum estimation.

The proposed algorithms in this thesis can be considered for future work

in other fields of application. In particular the sparsity-aware CG algorithms

developed can be implemented for distributed spectrum estimation scenario

and can be combine with the DAMDC approach. Adaptive network topologies

also represent an interesting area to apply the distributed algorithms covered

in this research and to develop new strategies to exchange information between

nodes.
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