[a, b] =
xk =
TFC: Se f(.) é contínua em [a, b],
f(x)=
F(.) é primitiva de f(.) se e somente se F'(x) = f(x) (anti-derivada).
G(x) =
é uma primitiva de f(.) tal que G(a) = 0.
Duas primitivas de f(.) diferem apenas por uma constante.
Se F(.) é qualquer primitiva de f(.), =
F(b) - F(a)
Integral definida: ;
Integral indefinida:
(uma primitiva qualquer)
Teorema: Se f(.) é contínua
por partes e limitada em [a, b] (onde, em cada ponto de descontinuidade
x0, o "salto" |
Cálculo Numérico Aproximado de Integrais