Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: DEEP REINFORCEMENT LEARNING FOR THE ARCADE LEARNING ENVIRONMENT
Autor(es): FLAVIO THIAGO FRANCO VAZ
Colaborador(es): JOSE ALBERTO RODRIGUES PEREIRA SARDINHA - Orientador
Catalogação: 28/ABR/2025 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=70120@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=70120@2
DOI: https://doi.org/10.17771/PUCRio.acad.70120
Resumo:
This study investigates the application of Deep Reinforcement Learning (DRL) techniques in the Arcade Learning Environment (ALE), with the aim of developing agents capable of outperforming humans in Atari 2600 games. The research focuses on evaluating the performance and convergence of wellestablished weight and bias initialization techniques in the literature within the architecture of the Deep Q-Network (DQN). The analysis includes comparisons between different initialization strategies and their implications on the learning efficiency and robustness of agents trained across a range of games.
Descrição: Arquivo:   
COMPLETE PDF