Título: | AUTOMATED ANALYSIS OF RAT BEHAVIOR USING DEEP LEARNING AND SPATIO-TEMPORAL VISUALIZATION | ||||||||||||
Autor(es): |
BERNARDO LUIZ BACH |
||||||||||||
Colaborador(es): |
ALBERTO BARBOSA RAPOSO - Orientador JAN JOSE HURTADO JAUREGUI - Coorientador |
||||||||||||
Catalogação: | 10/ABR/2025 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | SENIOR PROJECT | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=69948@1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=69948@2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.69948 | ||||||||||||
Resumo: | |||||||||||||
This project presents a multi-stage computational framework to stream-
line the analysis of rat behavior in conditioning experiments, a common pro-
cedure in neuroscience and behavioral research. Traditional manual analysis of
video-recorded sessions, which document rats responses to conditioned stimuli,
is labor-intensive and prone to error. Our approach leverages deep learning to
automate this process, enhancing both efficiency and accuracy in behavioral
assessments. In the first stage, we use deep learning-based methods to seg-
ment key rat body parts and detect the rearing posture across video frames.
To train these models, we developed a novel semantic segmentation dataset,
enabling the use of CNN-based architectures with supervised learning. Next,
our method extracts spatio-temporal descriptors from the segmented frames,
allowing for precise quantification of behavior over time. In the final stage, we
generate visual representations of these descriptors, creating a comprehensive
view of behavior patterns such as freezing, rearing, and grooming. This method
not only reduces the manual workload but also provides a robust, data-driven
approach to understanding complex behavioral responses in animal models,
opening avenues for more consistent, large-scale behavioral research.
|
|||||||||||||
|