Título: | PREDICTING THE PROGRESS OF CORROSION IN INDUSTRIAL FACILITIES FROM CLIMATE, AREA AND PERCENTAGE CORRODED DATA | ||||||||||||
Autor(es): |
ARTHUR XAVIER TAVARES |
||||||||||||
Colaborador(es): |
PAULO IVSON NETTO SANTOS - Orientador |
||||||||||||
Catalogação: | 05/ABR/2025 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | SENIOR PROJECT | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=69832@1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=69832@2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.69832 | ||||||||||||
Resumo: | |||||||||||||
External corrosion is one of the main causes of equipment failures in industrial
facilities, leading to highly costly maintenance. This study presents a machine learning
approach to predict corrosion rates based on climatic data, area, and percentage of
corrosion. The model employs the supervised learning algorithm Random Forest,
leveraging a dataset of corrosion measurements collected over time. Additionally, the
study aims to incorporate new data and variables into the model and evaluate their
impact on prediction performance. Thus, the primary objective of this project is to
enable prescriptive maintenance planning through the developed algorithm, ensuring
operational safety and reducing costs.
|
|||||||||||||
|