Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: PREDICTING THE PROGRESS OF CORROSION IN INDUSTRIAL FACILITIES FROM CLIMATE, AREA AND PERCENTAGE CORRODED DATA
Autor(es): ARTHUR XAVIER TAVARES
Colaborador(es): PAULO IVSON NETTO SANTOS - Orientador
Catalogação: 05/ABR/2025 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=69832@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=69832@2
DOI: https://doi.org/10.17771/PUCRio.acad.69832
Resumo:
External corrosion is one of the main causes of equipment failures in industrial facilities, leading to highly costly maintenance. This study presents a machine learning approach to predict corrosion rates based on climatic data, area, and percentage of corrosion. The model employs the supervised learning algorithm Random Forest, leveraging a dataset of corrosion measurements collected over time. Additionally, the study aims to incorporate new data and variables into the model and evaluate their impact on prediction performance. Thus, the primary objective of this project is to enable prescriptive maintenance planning through the developed algorithm, ensuring operational safety and reducing costs.
Descrição: Arquivo:   
COMPLETE PDF