Título: | COMPARATIVE ANALYSIS OF DIFFERENT FORECAST RECONCILIATION METHODS FOR HIERARCHICAL AIR TRAFFIC FORECASTING IN BRAZIL | ||||||||||||
Autor(es): |
JULIA BRANDAO CALIXTO LUCAS TURBAY RANGEL CALIXTO |
||||||||||||
Colaborador(es): |
FERNANDO LUIZ CYRINO OLIVEIRA - Orientador ULRICH OERTEL - Coorientador |
||||||||||||
Catalogação: | 07/FEV/2025 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | SENIOR PROJECT | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=69318@1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=69318@2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.69318 | ||||||||||||
Resumo: | |||||||||||||
Hierarchical forecasting methods exploit time series data structure, often producing more accurate and reliable forecasts through reconciliation strategies. This study introduces a hierarchical framework for forecasting air traffic arrivals at Brazilian airports, using data from 2000 to 2019 provided by the National Civil Aviation Agency (ANAC). We apply and compare ARIMA and ETS forecasting methods, along with various hierarchical reconciliation techniques, to improve forecast accuracy across different aggregation levels. By benchmarking our methods against traditional and state-of-the-art approaches, we aim to address a significant
gap in the modeling and forecasting of tourism flows in Brazil. The findings provide valuable insights for businesses and policymakers, offering a robust tool for anticipating air traffic demand trends. Our results underscore the potential of hierarchical forecasting to capture the dynamics of Brazil s air travel market, helping optimize resource allocation, infrastructure planning, and tourism management.
|
|||||||||||||
|