Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: MACHINE LEARNING FOR CHURN PREDICTION
Autor(es): BRUNO ABTIBOL RAMOS
Colaborador(es): AUGUSTO CESAR ESPINDOLA BAFFA - Orientador
Catalogação: 06/SET/2024 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=67882@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=67882@2
DOI: https://doi.org/10.17771/PUCRio.acad.67882
Resumo:
Machine Learning models have become increasingly present in the busi￾ness world. In an increasingly competitive market, churn prediction — that is, the moment when a user stops using a product or service — has become crucial for companies seeking to increase customer retention. This project aims to cre￾ate a robust Machine Learning model to predict churn at an enterprise level. Utilizing cloud computing, advanced Data Engineering systems, good Machine Learning practices, and effective business leverage strategies, the project hopes to provide an efficient and scalable tool to predict churn in a digital bank. This model can serve as a basis for building many other models and also contribute to the implementation of Machine Learning models in companies.
Descrição: Arquivo:   
COMPLETE PDF