Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: DERIVING EXPERT AGENT POLICIES INTO INTERPRETABLE DECISION TREES THROUGH IMITATION
Autor(es): THOMAS ADDIS JUNQUEIRA BOTELHO
Colaborador(es): AUGUSTO CESAR ESPINDOLA BAFFA - Orientador
Catalogação: 04/SET/2024 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=67834@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=67834@2
DOI: https://doi.org/10.17771/PUCRio.acad.67834
Resumo:
This study presents an investigation into the application of Imitation Learning (IL) techniques for extracting structured and interpretable policies from black-box expert models. The primary focus is to analyze the feasibility and effectiveness of this approach in translating behaviors learned by deep neural networks into decision trees, which represent a set of rules that can be sequentially evaluated to reach a decision. We evaluate this methodology in three distinct simulation environments: Lunar-Lander, Taxi, and CartPole. We test the DAgger algorithm and its variant VIPER, which iteratively train policies represented by decision trees from demonstrations of an expert policy. We compare the use of traditional decision trees with linear model trees, which contain linear models in their leaves.
Descrição: Arquivo:   
COMPLETE PDF