Título: | DERIVING EXPERT AGENT POLICIES INTO INTERPRETABLE DECISION TREES THROUGH IMITATION | ||||||||||||
Autor(es): |
THOMAS ADDIS JUNQUEIRA BOTELHO |
||||||||||||
Colaborador(es): |
AUGUSTO CESAR ESPINDOLA BAFFA - Orientador |
||||||||||||
Catalogação: | 04/SET/2024 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | SENIOR PROJECT | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=67834@1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=67834@2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.67834 | ||||||||||||
Resumo: | |||||||||||||
This study presents an investigation into the application of Imitation
Learning (IL) techniques for extracting structured and interpretable policies
from black-box expert models. The primary focus is to analyze the feasibility
and effectiveness of this approach in translating behaviors learned by deep
neural networks into decision trees, which represent a set of rules that can
be sequentially evaluated to reach a decision. We evaluate this methodology
in three distinct simulation environments: Lunar-Lander, Taxi, and CartPole.
We test the DAgger algorithm and its variant VIPER, which iteratively train
policies represented by decision trees from demonstrations of an expert policy.
We compare the use of traditional decision trees with linear model trees, which
contain linear models in their leaves.
|
|||||||||||||
|