Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: NON-GAUSSIAN SCORE DRIVEN MODELS FOR TIME SERIES WITH NON-LINEAR COMBINATION OF TREND AND SEASONALITY COMPONENTS
Autor(es): MATHEUS CARNEIRO NOGUEIRA
Colaborador(es): CRISTIANO AUGUSTO COELHO FERNANDES - Orientador
Catalogação: 19/MAR/2024 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=66255@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=66255@2
DOI: https://doi.org/10.17771/PUCRio.acad.66255
Resumo:
A commom technique in time series modeling is to decompose the time series into it s trend and seasonal components. Inside the Score-Driven Models class, this decomposition is usually made in an additive form, so that the series is expressed as the sum of its trend and seasonal components. However, it is not unusual that, even with the seasonal component being considered into the model, the residuals still show signs of seasonal dependency that were not captured by the model. With that said, the main objective of this project is to study if different non-linear combinations of those components are able to improve forecast accuracy in score driven models.
Descrição: Arquivo:   
COMPLETE PDF