Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: E-COMMERCE SALES FORECASTING USING STATISTICAL MODELS AND MACHINE LEARNING METHOD
Autor(es): JOAO PEDRO JESUS DE ABREU MARTINEZ
Colaborador(es): CRISTIANO AUGUSTO COELHO FERNANDES - Orientador
Catalogação: 19/MAR/2024 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=66253@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=66253@2
DOI: https://doi.org/10.17771/PUCRio.acad.66253
Resumo:
In this project, the predictive accuracy of statistical models and machine learning methods applied to five hourly time series of sales quantity from a retail e-commerce was investigated. The selected models included dynamic regression estimated by ordinary least squares (OLS), Lasso, and AdaLasso, in addition to the random forest method. Predictive accuracy was assessed for forecast horizons ranging from 1 to 12 hours ahead, using the MAE and RMSE metrics. The results indicated that models from the Lasso family exhibited superior performance according to the MAE metric. Regarding RMSE, the best results were associated with the dynamic regression model that incorporates autoregressive terms of the sales quantity and dummy variables (RegrDin(3)). The computational implementation of the models was carried out using the programming languages Python and R.
Descrição: Arquivo:   
COMPLETE PDF