Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: DEEP LEARNING FOR MEDICAL IMAGING EXAMINATIONS
Autor(es): MARCOS VINICIUS ARAUJO ALMEIDA
Colaborador(es): AUGUSTO CESAR ESPINDOLA BAFFA - Orientador
Catalogação: 12/JAN/2024 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=65879@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=65879@2
DOI: https://doi.org/10.17771/PUCRio.acad.65879
Resumo:
Convolutional Neural Networks (CNNs) represent a significant advancement in the field of medical imaging, redefining diagnostic and analytical methods. Their effectiveness is particularly notable in the identification and classification of abnormalities, promoting the early detection of conditions suchas cancer, brain injuries, and cardiac issues. In this thesis, CNN-based models were compared to decide the most efficient one for the task of classifying pulmonary X-ray images, aimed at diagnosing the presence or absence of pneumonia. This work highlighted the potential of CNNs in practical applications,underscoring their relevance and efficacy in image-based medical diagnosis.
Descrição: Arquivo:   
COMPLETE PDF