Título: | MACHINE LEARNING APPLIED TO FAULT DIAGNOSIS IN MECHANICAL SYSTEMS. | ||||||||||||
Autor(es): |
HUMBERTO SEGHETTO DOS SANTOS |
||||||||||||
Colaborador(es): |
HELON VICENTE HULTMANN AYALA - Orientador PEDRO HENRIQUE LEITE DA SILVA PIRES DOMINGUES - Coorientador |
||||||||||||
Catalogação: | 21/DEZ/2023 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | SENIOR PROJECT | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=65666@1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=65666@2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.65666 | ||||||||||||
Resumo: | |||||||||||||
In various engineering fields, ensuring the health of utilized structures is
crucial. Structural Health Monitoring (SHM) is the specific discipline aimed
at assessing and maintaining the integrity of structures, enabling early fault
detection, and extending their lifespan. In this work, we will present an
application of Machine Learning (ML) as an auxiliary tool in the essential
fault identification process within SHM. Specifically, we will analyze a case
study with an emphasis on wind turbine blades, utilizing the data from
this case as a basis to demonstrate the applicability of theoretical concepts.
Among the techniques employed, we highlight the methodology focused on
dimensional reduction, utilizing both traditional methods such as Principal
Component Analysis and more modern approaches like feature engineering,
coupled with highly adaptive ML models. These tools are crucial to harness
the maximum potential of the vast amount of data generated by modern
sensor and monitoring technologies. The integration of ML into SHM not only
enhances precision in fault identification but also exemplifies the adaptability
and effectiveness of innovative technologies in safeguarding structural health.
|
|||||||||||||
|