Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: CRACK DETECTION FROM IMAGES USING MACHINE LEARNING
Autor(es): MAURILIO GOMES DONIN DE SOUZA
Colaborador(es): HELON VICENTE HULTMANN AYALA - Orientador
WALISSON CHAVES FERREIRA PINTO - Coorientador
Catalogação: 21/DEZ/2023 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=65661@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=65661@2
DOI: https://doi.org/10.17771/PUCRio.acad.65661
Resumo:
Crack detection poses a common challenge in structural health monitoring (SHM). Often conducted manually, this process is prone to errors. The use of images offers significant advantages by eliminating the need for direct contact with the structure and providing more comprehensive coverage. Furthermore, machine learning techniques have demonstrated effectiveness in image classification, identifying the presence or absence of damage. This study implements a machine learning pipeline consisting of preprocessing, feature extraction using Principal Component Analysis, model creation for Support Vector Machine, Decision Tree, and K-nearest neighbors, hyperparameter optimization, and results analysis in the task of classifying images of concrete with and without cracks. The best performance achieved in this study was using the SVM model, which exhibited an accuracy of 98.18%, precision of 98.70%, recall of 97.60%, and F1- Score of 98.15%.
Descrição: Arquivo:   
COMPLETE PDF