Título: | CRACK DETECTION FROM IMAGES USING MACHINE LEARNING | ||||||||||||
Autor(es): |
MAURILIO GOMES DONIN DE SOUZA |
||||||||||||
Colaborador(es): |
HELON VICENTE HULTMANN AYALA - Orientador WALISSON CHAVES FERREIRA PINTO - Coorientador |
||||||||||||
Catalogação: | 21/DEZ/2023 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | SENIOR PROJECT | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=65661@1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=65661@2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.65661 | ||||||||||||
Resumo: | |||||||||||||
Crack detection poses a common challenge in structural health monitoring (SHM). Often
conducted manually, this process is prone to errors. The use of images offers significant
advantages by eliminating the need for direct contact with the structure and providing
more comprehensive coverage. Furthermore, machine learning techniques have
demonstrated effectiveness in image classification, identifying the presence or absence
of damage. This study implements a machine learning pipeline consisting of
preprocessing, feature extraction using Principal Component Analysis, model creation
for Support Vector Machine, Decision Tree, and K-nearest neighbors, hyperparameter
optimization, and results analysis in the task of classifying images of concrete with and
without cracks. The best performance achieved in this study was using the SVM model,
which exhibited an accuracy of 98.18%, precision of 98.70%, recall of 97.60%, and F1-
Score of 98.15%.
|
|||||||||||||
|