Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: BOTNET TRAFFIC ANALYSIS USING MACHINE LEARNING
Autor(es): GABRIEL MANHAES DE SOUZA
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
ANDERSON OLIVEIRA DA SILVA - Coorientador
Catalogação: 18/SET/2023 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=63981@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=63981@2
DOI: https://doi.org/10.17771/PUCRio.acad.63981
Resumo:
The objective of this study is to satisfactorily produce a botnet traffic detection model, using pre-processing, feature engineering and optimization techniques specifically for the CTU-13 dataset, which has real samples of malware related traffic in addition to normal and background traffic. The methodology, in short, was: removal of invalid data through simple imputation; encoding; grouping in 5 second windows, source address and label; evaluation of prediction results. For the final evaluation, the following were used: Autoencoder, Stacked Autoencoders, Variational Autoencoder, Random Forest and KNN. All models showed good metrics, and the best results were from Random Forest, with a 0.96 f1-score.
Descrição: Arquivo:   
COMPLETE PDF