Título: | NONLINEAR IDENTIFICATION OF A POSITIONING SYSTEM SUBJECT TO FRICTION | ||||||||||||
Autor(es): |
ANTONIO WEILLER CORREA DO LAGO |
||||||||||||
Colaborador(es): |
HELON VICENTE HULTMANN AYALA - Orientador LUCAS CASTRO SOUSA - Coorientador |
||||||||||||
Catalogação: | 12/JUL/2022 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | SENIOR PROJECT | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=59934@1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=59934@2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.59934 | ||||||||||||
Resumo: | |||||||||||||
Modeling the dynamics of a servo mechanical system is one of the main
challenges in robot manipulators, due to the the presence of complex and
non-linear aspects of the phenomenons involved in it s modelling making it
challenging to conceive an ideal representation. In this work we describe an
original experimental bench composed of an electric actuator and a link joined
by a joint. Using experimental measurements this projet has the objective
of finding, through two different identification methods, a model that best
represents the dynamics of the developed servosystem through experimental
measurements. The first method consists in optimizing the parameters from
different friction models using the grey-box type identification method. This
work implements the Coulomb, Dahl and LuGre friction models. The blackbox
method, utilizes artificial neural networks to predict the angular position
and angular speed of the experimental bench. Analising the results, we observe
that the models that considers the significant number of friction phenomena
perform better. The results of the second method indicate a better performance
than the grey-box method, showing a 67% reduction of the MAE error metric.
|
|||||||||||||
|