Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: SEMANTIC SEGMENTATION IN DEFORESTATION AREAS
Autor(es): THIAGO MATHEUS BRUNO DA SILVA
Colaborador(es): RAUL QUEIROZ FEITOSA - Orientador
MABEL XIMENA ORTEGA ADARME - Coorientador
Catalogação: 13/DEZ/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=56551@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=56551@2
DOI: https://doi.org/10.17771/PUCRio.acad.56551
Resumo:
Deforestation is of no doubt an hugely important problem, which affects directly some destructive phenomena such as biodiversity reduction, climate change among other destructive phenomena. Therefore, is of tremendously importance to detect early deforestation. Motivated by this problem, this work proposes an new method for automatic deforestation detection, based on semantic segmentation, using ResUnet-a multitasking with a new Semi-Supervised Change vector analysis (CVA) task. The objective of this work is to study the contribution of CVA to our change detection problem and compare its relevance with the other tasks. Besides, we want observe the different choices of threshold used on the whole training and its impact on final main segmentation task. The method was evaluated in a region of the Brazilian Legal Amazon. In our experiments were used two images of Landsat 8 acquired in 2018 and 2019 which were concatenated on the input.
Descrição: Arquivo:   
COMPLETE PDF