Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: SINGLE IMAGE SUPER-RESOLUTION, A COMPARATIVE STUDY
Autor(es): YAN MARTINS BRAZ GUREVITZ CUNHA
Colaborador(es): MARCO SERPA MOLINARO - Orientador
Catalogação: 09/SET/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=54583@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=54583@2
DOI: https://doi.org/10.17771/PUCRio.acad.54583
Resumo:
The Single Image Super-Resolution (SISR) problem consists of trying to obtain a High-Resolution version of an image from its Low-Resolution version, a quite challenging task. Recently Neural Networks models have shown to be quite powerful in solving this problem. This project will cover a broad study of state-of-the-art solutions to this problem, and analyse in detail three of the best current models: SRResNet , EDSR and WDSR. Each of these models will go through computational tests to revalidate their performance, utilising various metrics to compare the generated images with the ground truth (High-Resolution original). We ll study the difference in architecture between the models and what causes the difference in performance.
Descrição: Arquivo:   
COMPLETE PDF