Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: SESSION-BASED SEQUENTIAL TRACK SKIP PREDICTION OF ONLINE MUSIC STREAMING SERVICE: A DATA DRIVEN APPROACH TO UNDERSTAND USER TASTE DURING A STREAMING SESSION
Autor(es): BRUNO MIRANDA MARINHO
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
Catalogação: 01/SET/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=54488@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=54488@2
DOI: https://doi.org/10.17771/PUCRio.acad.54488
Resumo:
In a music streaming service such as Spotify and Deezer, music recommendation plays a big role in user engagement. The main idea is to predict whether a user will skip individual tracks based on what that same user has listened previously in his session, using data science approaches such as Neural Networks. By having an accurate prediction of that type the system can decide if that song should be recommended in that user session or not.
Descrição: Arquivo:   
COMPLETE PDF