Título: | STACKED ENSEMBLE MODEL FOR PROPERTY PRICE PREDICTION BASED ON GEOGRAPHICALLY WEIGHTED REGRESSION AND TEXT MINING | ||||||||||||
Autor(es): |
FELIPE ANTONINI MIEHRIG |
||||||||||||
Colaborador(es): |
FERNANDO LUIZ CYRINO OLIVEIRA - Orientador |
||||||||||||
Catalogação: | 04/MAR/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | SENIOR PROJECT | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=51708@1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=51708@2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.51708 | ||||||||||||
Resumo: | |||||||||||||
Automated valuation models (AVMs) are vastly used for property price prediction. However,
few explore the underlying potential of text data in real estate classifieds. This project
applies the theory behind hedonic models to develop two different prediction approaches that
are later combined in a stacked ensemble model. A data set comprising 16693 properties and
their asked prices was scraped from one of the biggest real estate agencies in Rio de Janeiro.
Using the text mining steps, the classifieds descriptions are vectorized and passed to a Lasso
model while a Geographically Weighted Regression (GWR) is estimated using solely numeric
variables. Both models are then combined in a two-stage ensemble based on a second stage
Linear Regression, which finds the optimal linear combination of the GWR and Lasso predictions.
The conclusion of this project leads to promising results in the realm of property price
prediction using both structured and unstructured data.
|
|||||||||||||
|