Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: COMPARISON OF LINEAR AND NONLINEAR METHODS FOR SYSTEMS IDENTIFICATION WITH PIEZOELECTRIC MATERIALS AND ACOUSTIC TRANSMISSION
Autor(es): DANIEL PEREIRA DA COSTA
Colaborador(es): HELON VICENTE HULTMANN AYALA - Orientador
Catalogação: 13/DEZ/2019 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=46365@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=46365@2
DOI: https://doi.org/10.17771/PUCRio.acad.46365
Resumo:
Piezoelectric materials are materials capable of producing an electric current when subjected to mechanical stress. On the other hand, these materials are physically deformed when an electric field is applied to them. In this work, piezoelectrics are used for data acquisition through an acoustic tunnel and thus apply systems identification techniques to the system modeling process. This work aims to identify an acoustic transmission system through black box system identification methods. Specifically, the AutoRegressive with eXogenous Inputs (ARX) and AutoRegressive Moving Average with eXogenous Inputs (ARMAX) linear models and Nonlinear AutoRegressive with eXogenous Inputs (NARX) model with artificial neural network structure are used. This project encompasses all stages of a systems identification process, from data acquisition to results. The results obtained are compared with the ARX model and the ARMAX model. The prediction conclusion shows that the best result was obtained with the ARMAX model.
Descrição: Arquivo:   
COMPLETE PDF