Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Título: STELLAR STRUCTURE AND EVOLUTION MODELING THROUGH COMPUTATIONAL INTELLIGENCE TOOLS
Autor(es): GABRIELA DE OLIVEIRA PENNA TAVARES
Colaborador(es): MARCO AURELIO CAVALCANTI PACHECO - Orientador
Catalogação: 18/JAN/2013 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=21010@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=21010@2
DOI: https://doi.org/10.17771/PUCRio.acad.21010
Resumo:
The purpose of this work is to determine the age and some structural properties of main sequence stars through the utilization of Computational Intelligence tools. Computational Intelligence is a set of nature-inspired methods and techniques that model human behavior. Here, we apply a genetic algorithm and a set of neural networks to approximate the mass, radius, core density, core temperature, core pressure and age of a main sequence star starting only with observational values for its luminosity (energy flux released on the surface) and for its surface temperature. A mathematical model for the star s internal structure is used to evaluate the adequacy of each solution proposed by the genetic algorithm for the star s structural properties, and a stellar database is used to train the neural networks for age inference.
Descrição: Arquivo:   
COMPLETE PDF