Logo PUC-Rio Logo Maxwell
TRABALHOS DE FIM DE CURSO @PUC-Rio
Consulta aos Conteúdos
Estatística
Título: DYNAMIC REGRESSION MODEL FOR ENERGY PRICE PROJECTIONS IN BRAZIL
Autor(es): FRANCISCO MONTENEGRO J DE CARVALHO
HEITOR INACIO SARDINHA
Colaborador(es): ALVARO DE LIMA VEIGA FILHO - Orientador
Catalogação: 19/DEZ/2011 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: SENIOR PROJECT
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=18806@1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/TFCs/consultas/conteudo.php?strSecao=resultado&nrSeq=18806@2
DOI: https://doi.org/10.17771/PUCRio.acad.18806
Resumo:
The Electric Energy Commercialization Council (CCEE) publishes, on a weekly basis, energy price (PLD). This price is used to value the buy and sell of the energy in the short term market in Brazil. Most transactions in the Brazilian energy market are indexed to the energy price (PLD). Its calculation is based on predicted information, previous to the system operation. The complete process of pricing consists in utilizing two computational models, NEWAVE and DECOMP, which produce the Marginal Cost of Operation (CMO) of each of the four submarkets (Northeast, North, Southeast and Midwest, and South). These models use enormous quantities of complex input variables. The present work, therefore, aims on using a simplified Dynamic Projection model, which only uses data provided by the sector’s agencies, publicly published, and easily extracted for use.
Descrição: Arquivo:   
COMPLETE PDF