Título: | SENSITIVITY ANALYSIS AND SHAPE OPTIMIZATION OF GEOMETRICALLY NON-LINEAR STRUCTURES | ||||||||||||
Autor: |
EVANDRO PARENTE JUNIOR |
||||||||||||
Colaborador(es): |
LUIZ ELOY VAZ - Orientador RAUL ROSAS E SILVA - Coorientador |
||||||||||||
Catalogação: | 05/OUT/2001 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1998&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1998&idi=2 [es] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1998&idi=4 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.1998 | ||||||||||||
Resumo: | |||||||||||||
This work presents a methodology for shape optimization of
geometrically nonlinear structures. The main purpose is to
avoid the stability problems generated by optimization
based on linear behavior. The methodology was implemented
for two-dimensional problems, and several structures were
successfully optimized. Using geometrical modeling
concepts, the shape of the structure is defined by its
boundary curves. Therefore, parametric representation and
curve definition by a set of key points are discussed in
detail. Due to its flexibility in shape definition,
particular attention is given to interpolation using B-
splines. The optimization problem is defined based on the
geometrical model and the design variables are the
positions of key points. Design variable linking can be
applied to enforce symmetry.The structure it is analyzed
using plane isoparametric elements. Thus, is necessary
to perform the discretization of the structure in a set of
finite elements. Different algorithms were implemented to
generate structured or unstructured finite element meshes.
The standard Newton-Raphson method is applied to find the
equilibrium configuration, and different methods can be
used to evaluate critical points. Due to the convergence
problems presented by direct methods, a new semi-direct
method was developed. The numerical results show the
suitability of the finite elements and numerical methods
implemented in the present work.The mathematical
programming algorithms used in this work require the
evaluation of design sensitivities in order to compute the
search direction of the optimization process.Using basic
sensitivity equations, which are independent from the
particular element, analytical expressions were developed
for the sensitivity computation of isoparametric elements
formulated according to the Total Lagrangian approach.
Applying the analytical method for more complex elements is
very cumbersome and error prone. On the other hand, the
finite difference method is simple and generic, but its
computational cost is prohibitive. The semi-analytical
method preserves the advantages of the use of finite
differences and has a low computational cost, but presents
severe accuracy problems. Hence, a method based on the
exact differentiation of the rigid body motions was
developed in this work to improve the accuracy of the semi-
analytical sensitivities of geometrically nonlinear
structures. The numerical examples show that this method
eliminates the abnormal errors presented by the semi-
analytical sensitivities.
|
|||||||||||||
|