Título: | ELASTO-PLASTIC ADAPTATIVE ANALYSIS FOR MODELING FRACTURE PROCESSES OF TWO-DIMENSIONAL STRUCTURES | ||||||||||||
Autor: |
TEREZA DENYSE PEREIRA DE ARAUJO |
||||||||||||
Colaborador(es): |
LUIZ FERNANDO CAMPOS RAMOS MARTHA - Orientador |
||||||||||||
Catalogação: | 24/AGO/2001 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1885&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1885&idi=2 [es] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1885&idi=4 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.1885 | ||||||||||||
Resumo: | |||||||||||||
The numerical analysis of structural and mechanical
problems by the finite element method requires, by the
analyst, some knowledge and experience on mesh refinement.
Mesh generation is a difficult task, especially when the
model contains cracks. As the crack propagates in the
discret model, the geometry of the model changes and the
mesh must be updated.
This work presents an interactive graphics system for
modeling fracture processes of two-dimensional structures.
This system may consider any number of cracks that can be
inserted in the model at any position, with automatic and
adaptive finite element mesh generation. The system can be
used for linear and elastic-plastic mechanical problems,
with and without cracks.
The self-adaptive process is based on an h-type refinement,
with an a posteriori error estimation. Three types of error
estimators are available. The first, which is based on the
energy norm, is used for elastic- linear analysis. The
second and the third, which are based on effective stress
and on ratio of plastic work, respectively, are used for
elastic-plastic analysis.
Mesh generation is based on spatial decomposition
techniques, which consists on a binary tree partition of
boundary curves, including crack curves, and on a quadtree
partition for the domain refinement.
The system incorporates the following components: a
geometric modeler to create the model geometry, a pre-
processor that generates the initial mesh and applies
model attributes, a numerical analysis module that
evaluates the finite element response, and a module, called
the adaptive module, that manages the adaptive process of
mesh generation.
The latter module also incorporates post-processing
features that assist in the visualization of analysis
results, including fracture parameters.
In the non- linear adaptive process for incremental
plasticity analysis, it is used a technique for
interpolating analysis variables across distinct meshes.
The von Mises yielding criterion, with isotropic hardening,
is used. Some examples are presented to evaluate the
methods for computing fracture analysis parameters and the
performance of the adaptive process.
|
|||||||||||||
|