Título: | MODELS AND ALGORITHMS FOR THE DIAMETER CONSTRAINED MINIMUM SPANNING TREE PROBLEM | |||||||
Autor: |
ANDREA CYNTHIA DOS SANTOS |
|||||||
Colaborador(es): |
CELSO DA CRUZ CARNEIRO RIBEIRO - Orientador ABILIO PEREIRA DE LUCENA FILHO - Coorientador |
|||||||
Catalogação: | 01/NOV/2006 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9231&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9231&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.9231 | |||||||
Resumo: | ||||||||
In this work, models and approximation algorithms to solve
the Diameter
Constrained Minimum Spanning Tree Problem (AGMD) are
proposed. This
problem typically models network design applications where
all vertices
must communicate with each other at a minimum cost, while
meeting a
given quality requirement. The formulations proposed by
Achuthan and
Caccetta are strengthened with valid inequalities. A
lagrangean relaxation
is proposed for the multicommodity flow model developed by
Gouveia and
Magnanti. Adaptations are made in the constructive
heuristics proposed by
Deo and Abdalla and by Raidl and Julstrom. Four local
search procedures,
a GRASP algorithm and a hybrid heuristic are proposed.
Upper bounds
within 2% of the optimal solution values are obtained for
the two classes
of instances used by Gouveia and Magnanti and by Santos,
Lucena and
Ribeiro. Moreover, stronger upper bounds are reported for
11 instances in
complete graphs used by Raidl, Julstrom and Gruber
|
||||||||