Título: | ION DESORPTION DESCRIBED BY AN EXTENDED NUCLEAR TRACK MODEL: APPLICATION TO WATER ICE CLUSTERS | |||||||
Autor: |
PETER DARWIN IZA TOAPANTA |
|||||||
Colaborador(es): |
ENIO FROTA DA SILVEIRA - Orientador |
|||||||
Catalogação: | 18/OUT/2006 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9157&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9157&idi=2 [es] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=9157&idi=4 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.9157 | |||||||
Resumo: | ||||||||
Secondary ion desorption induced by impact of fast
projectiles is an
important phenomenon not only because it is directly
connected to atomic
collision processes in solids, but also to practical
implications in the Physics
of Surfaces, Bioscience and Astrophysics. A theoretical
model describing the
desorption induced by secondary electron (SEID) produced
in nuclear tracks is
extended in the present work. It considers that the
nuclear track is composed
by a positive charged infratrack and a negative charged
ultratrack. Secondary
electrons emanated from infratrack reach the surface of
the solid and generate
molecular ions which are accelerated by an electric field
produced by the
track. The experimental data obtained by a 1.7 MeV
nitrogen beam inducing
electronic sputtering on condensed water target are used
to test the SEID
model. The initial velocity vectors and the masses of the
emitted ions were
obtained by the time-of-fight technique equipped with a
position sensitive
delay line detector XY-TOF. The data obtained by the
technique show
differences of symmetries in the angular distribution of
the secondary ions.
In particular, isotropic emission was observed for light
clusters in relation
to normal to the surface, contrasting with heavy clusters
that show an
asymmetric distribution attributed to nuclear track memory
direction during
the emission. The agreement between the model results and
experimental data
is considered reasonable.
|
||||||||