Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: TENSOR PRODUCT UNIVERSALITY AND COECKENULLS COMPOSITIONALITY THEOREM
Autor: DEBORA FREIRE MONDAINI
Colaborador(es): GEORGE SVETLICHNY - Orientador
Catalogação: 13/JUL/2006 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8674&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8674&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.8674
Resumo:
The purpose of this work is to present a simplified demonstration of Co- ecke's Compositionality Theorem, which refers to the quantum information processing associated to n-partite entangled states. By using the universal property of the tensor product in our proof, we will see that is possible to consider all the relevant states as being product states, which turns the demonstration much easier. We will present also the teleportation process of quantum states, so called nowadays, and verify finally that such a process is a trivial application of Coecke's theorem
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT AND SUMMARY PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
REFERENCES PDF