Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: HIGH FREQUENCY DATA AND PRICE-MAKING PROCESS ANALYSIS: THE EXPONENTIAL MULTIVARIATE AUTOREGRESSIVE CONDITIONAL MODEL - EMACM
Autor: GUSTAVO SANTOS RAPOSO
Colaborador(es): ALVARO DE LIMA VEIGA FILHO - Orientador
Catalogação: 04/JUL/2006 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8620&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8620&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.8620
Resumo:
The availability of high frequency financial transaction data - price, spread, volume and duration -has contributed to the growing number of scientific articles on this topic. The first proposals were limited to pure duration models. Later, the impact of duration over instantaneous volatility was analyzed. More recently, Manganelli (2002) included volume into a vector model. In this document, we extended his work by including the bid-ask spread into the analysis through a vector autoregressive model. The conditional means of spread, volume and duration along with the volatility of returns evolve through transaction events based on an exponential formulation we called Exponential Multivariate Autoregressive Conditional Model (EMACM). In our proposal, there are no constraints on the parameters of the VAR model. This facilitates the maximum likelihood estimation of the model and allows the use of simple likelihood ratio hypothesis tests to specify the model and obtain some clues about the interdependency structure of the variables. In parallel, the problem of stock price forecasting is faced through an integrated approach in which, besides the modeling of high frequency financial data, a contemporary ordered probit model is used. Here, EMACM captures the dynamic that high frequency variables present, and its forecasting function is taken as a proxy to the contemporaneous information necessary to the pricing model.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
CHAPTER 8 PDF    
REFERENCES AND APPENDICES PDF