Título: | EWMA CHART WITH ADAPTIVE SMOOTHING CONSTANT FOR STATISTICAL PROCESS CONTROL | ||||||||||||||||||||||||||||||||||||||||
Autor: |
BRUNO FRANCISCO TEIXEIRA SIMOES |
||||||||||||||||||||||||||||||||||||||||
Colaborador(es): |
EUGENIO KAHN EPPRECHT - Orientador |
||||||||||||||||||||||||||||||||||||||||
Catalogação: | 25/ABR/2006 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8189&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=8189&idi=2 |
||||||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.8189 | ||||||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||||||
This work proposes an EWMA process control chart for
individual
observations or subgroup averages, in which the smoothing
constant varies
between two values according to the most recent value of
the EWMA statistic, in
order to achieve faster detection of small to moderate
shifts in the process mean,
and without the operational complexities presented by
other adaptive schemes,
since its sample size and sampling interval do not vary.
There is one other work
proposing the adaptive variation of the smoothing constant
of EWMA charts, but
based on a different criterion: Capizzi and Masarotto
(2003). The adaptive
EWMA scheme was combined with Shewhart limits for the
individual values (or
subgroup averages), to enhance its sensitivity to large
shifts, again with no extra
operational burden. The out-of-control average run lengths
(ARL1´s) were
calculated through a numerical approximation method based
on a Markov chain
model. The ARL1´s were compared of the proposed scheme, of
the traditional
(fixed parameter) EWMA chart and of Capizzi and
Masarottos´s adaptive EWMA
scheme. The proposed scheme generally provides the
shortest ARL1´s for shifts in
the mean above one standard deviation, and Capizzi and
Masarotto´s scheme
tends to outperform it for smaller shifts. Both schemes
perform better than the
fixed parameter EWMA. An advantage that can become
decisive for the adoption
of the proposed scheme is the simplicity of the
calculations required for the
monitoring.
|
|||||||||||||||||||||||||||||||||||||||||
|