Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: TRANSIENT HEAT TRANSFER MODELING OF THERMALLY INSULATED OIL OR GAS PIPELINES
Autor: JHOANY JHORDANN BARRERA ESCOBEDO
Colaborador(es): ANGELA OURIVIO NIECKELE - Orientador
LUIS FERNANDO ALZUGUIR AZEVEDO - Coorientador
Catalogação: 07/FEV/2006 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7740&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7740&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.7740
Resumo:
Subsea pipelines are employed not only for production but also for transportation. In both situations, warm oil loses heat to the cold sea water. The heat loss to the ambient is controlled by means of thermal insulation, which is designed for steady state operations. During shutdowns, the stagnant fluid in the pipeline loses heat to the cold surrounding, eventually reaching some critical temperature. As a result, several problems can occur, such as formation of hydrates or deposition of high molecular weight paraffins on the inner wall of the subsea line, which can lead to flow line blockage and production shutdown. Restart of very viscous fluid after shutdown is also critical, since viscosity increases significantly with the reduction of the temperature. This work presents an analysis of the influence of the pipe wall thermal capacitance on the transient behavior of heavily insulated lines. The heat loss from the pipeline is determined, by solving the transient heat conduction equation for the pipewall layers, utilizing a simple one-dimensional model in the radial direction. The finite volume method is employed to solve the transient flow inside the pipeline, from the time instant that a valve at the end point of the line is closed, coupled with the pipe wall thermal transient. Comparisons with the prediction of commercial softwares were performed and their limitations are addressed. Numerical results obtained for flows of both liquid and gases, considering and neglecting the thermal capacitance, revealed that accounting for the thermal capacity of the wall is relevant to the determination of cooldown times
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
REFERENCES AND APPENDICES PDF