Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: PATTERN DETECTION IN BIDIMENSIONAL IMAGENS: CASES STUDY
Autor: GUILHERME LUCIO ABELHA MOTA
Colaborador(es): RAUL QUEIROZ FEITOSA - Orientador
SIDNEI PACIORNIK - Coorientador
Catalogação: 10/NOV/2005 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7469&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7469&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.7469
Resumo:
This dissertation studies two pattern detection problems in images with complex background, in which standard segmentation techniques do not provide good results: the detection of structural units (SU`s) in images obtained through High resolution transmission Electron Microscopy and the detection of frontal human faces in images. The methods employed in the solution of both problems have many similarities - a neighborhood operator, basically composed of pre-processing, dimensionality reduction and classification steps, scans the input image searching for the patterns of interest. For SU detection three dimensionality reduction methods - Principal Component Analysis (PCA), PCA of the balanced training set (PACEq), and a new method, axis that maximize the distance to a given class centroid (MAXDIST) -, and two classifiers - Euclidean Distance (EUC) and back-propagation neural network (RN). The MAXDIST/EUC combination, with just one component, provided a detection rate of 82% with less false detections. For face detection a new approach was employed, using a back-propagation neural network as classifier. It takes as input a representation in the so-called face space and the reconstruction error (DFFS). In comparison with benchmark results from the literature, the proposed method reached similar detection rates.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
PDF    
PDF