Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Título: DETECTING AND SUBSTUTING DISCONTINUITIES IN MINUTE-BY-MINUTE LOAD DATA VIA BAYES FACTOR
Autor: SANDRA CANTON CARDOSO
Colaborador(es): REINALDO CASTRO SOUZA - Orientador
Catalogação: 09/NOV/2005 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7462&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7462&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.7462
Resumo:
In the National Center for System Operation (CNOS), the Eletrobrás organ which controls the Brazilian electrical system, readings of load demand are taken every 20 seconds, and then integrated over the minute, to provide ninute-to-minute data. These data are then radio- transmitted via satellite. Many errors occur during the reading or the transmission, and so the data series contains many missing values (which appear as discontinuities in the graph of the series). In this paper, we propose a system that detects and corrects automatically these errors in the demand data, by means of a Bayesian approach using the Bayes factor.
Descrição: Arquivo:   
PDF      
PDF