Título: | SENSITIVITY STUDY OF HYPERPARAMETERS IN E2CO | ||||||||||||
Autor: |
BRUNO DOS SANTOS COSTA |
||||||||||||
Colaborador(es): |
SINESIO PESCO - Orientador ABELARDO BORGES BARRETO JR - Coorientador |
||||||||||||
Catalogação: | 02/JUN/2025 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=70705&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=70705&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.70705 | ||||||||||||
Resumo: | |||||||||||||
This dissertation is situated within the field of Mathematical Modeling,
with an emphasis on problems related to Reservoir Engineering. In particular,
the text explores the application of neural networks for the prediction of key oil
well data, such as bottom-hole pressure, oil flow rate, and water flow rate over
extended periods. To achieve this, the method known as Embed to Control and
Observe was employed. One of the main topics discussed in the study concerns
the sensitivity of neural network hyperparameters, which are defined during
the training process. Specifically, the investigation focused on how variations in
these hyperparameters affect the accuracy of the predictions. It was observed
that the weights assigned to the cost functions (transition, output transition,
water flow rate, saturation in producing gridblocks), the batch size, the seed,
and the Python version significantly influenced the prediction accuracy.
|
|||||||||||||
|