Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: POLIEDRO: A NOVEL ANALYTICS FRAMEWORK WITH NON-PARAMETRIC DATA-DRIVEN REGULARIZATION
Autor: TOMAS FREDERICO MACIEL GUTIERREZ
Colaborador(es): DAVI MICHEL VALLADAO - Orientador
BERNARDO KULNIG PAGNONCELLI - Coorientador
Catalogação: 31/MAR/2025 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69781&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69781&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.69781
Resumo:
PolieDRO is a novel analytics framework with applications to both predictive and prescriptive realms. It harnesses the power and flexibility of Data-Driven Distributionally Robust Optimization (DRO) to circumvent the need for regularization hyperparameters, while extracting structure from the underlying data. In the field of predictive modeling, recent literature shows that traditional machine learning methods such as SVM and (square-root) LASSO can be written as Wasserstein-based DRO problems. Inspired by those results we propose a hyperparameter-free ambiguity set that explores the polyhedral structure of data-driven convex hulls, generating computationally tractable regression and classification methods for any convex loss function. Numerical results based on 100 real-world databases and an extensive experiment with synthetically generated data show that our methods consistently outperform their traditional counterparts. In the prescriptive realm, we develop a portfolio optimization model that employs the DRO approach simultaneously at the risk and return levels. Applying this model to real financial data spanning several decades, we achieve consistent superior performance compared to a benchmark.
Descrição: Arquivo:   
COMPLETE PDF