Título: | POLIEDRO: A NOVEL ANALYTICS FRAMEWORK WITH NON-PARAMETRIC DATA-DRIVEN REGULARIZATION | ||||||||||||
Autor: |
TOMAS FREDERICO MACIEL GUTIERREZ |
||||||||||||
Colaborador(es): |
DAVI MICHEL VALLADAO - Orientador BERNARDO KULNIG PAGNONCELLI - Coorientador |
||||||||||||
Catalogação: | 31/MAR/2025 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69781&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69781&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.69781 | ||||||||||||
Resumo: | |||||||||||||
PolieDRO is a novel analytics framework with applications to both
predictive and prescriptive realms. It harnesses the power and flexibility of
Data-Driven Distributionally Robust Optimization (DRO) to circumvent the
need for regularization hyperparameters, while extracting structure from the
underlying data.
In the field of predictive modeling, recent literature shows that traditional
machine learning methods such as SVM and (square-root) LASSO can be
written as Wasserstein-based DRO problems. Inspired by those results we
propose a hyperparameter-free ambiguity set that explores the polyhedral
structure of data-driven convex hulls, generating computationally tractable
regression and classification methods for any convex loss function. Numerical
results based on 100 real-world databases and an extensive experiment with
synthetically generated data show that our methods consistently outperform
their traditional counterparts.
In the prescriptive realm, we develop a portfolio optimization model
that employs the DRO approach simultaneously at the risk and return levels.
Applying this model to real financial data spanning several decades, we achieve
consistent superior performance compared to a benchmark.
|
|||||||||||||
|