Título: | PAC LEARNING IN A FAILURE PREDICTION APPROACH IN POWER TRANSMISSION ASSETS | ||||||||||||
Autor: |
FELIPE DA ROCHA LOPES |
||||||||||||
Colaborador(es): |
EDWARD HERMANN HAEUSLER - Orientador |
||||||||||||
Catalogação: | 17/MAR/2025 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69640&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69640&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.69640 | ||||||||||||
Resumo: | |||||||||||||
This dissertation addresses the innovative application of machine learn
ing in predicting failures in power transmission assets. Emphasizing improve
ments in accuracy and reliability compared to traditional methods, the work
introduces machine learning techniques using the Random Forest algorithm
in a sector that has historically been conservative in adopting this type of
computational technology. The document is structured to include a theoretical foundation, relevant previous works, presented results, and concludes with
directions for future research. Additionally, it discusses an approach of best
choice of machine learning algorithms by the minimum sample size of ex
amples, offering a tool developed to support decision-making. Through this
academic endeavor, the dissertation aims to contribute to the technological
advancement of the electrical sector.
|
|||||||||||||
|