Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: PAC LEARNING IN A FAILURE PREDICTION APPROACH IN POWER TRANSMISSION ASSETS
Autor: FELIPE DA ROCHA LOPES
Colaborador(es): EDWARD HERMANN HAEUSLER - Orientador
Catalogação: 17/MAR/2025 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69640&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69640&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.69640
Resumo:
This dissertation addresses the innovative application of machine learn ing in predicting failures in power transmission assets. Emphasizing improve ments in accuracy and reliability compared to traditional methods, the work introduces machine learning techniques using the Random Forest algorithm in a sector that has historically been conservative in adopting this type of computational technology. The document is structured to include a theoretical foundation, relevant previous works, presented results, and concludes with directions for future research. Additionally, it discusses an approach of best choice of machine learning algorithms by the minimum sample size of ex amples, offering a tool developed to support decision-making. Through this academic endeavor, the dissertation aims to contribute to the technological advancement of the electrical sector.
Descrição: Arquivo:   
COMPLETE PDF