Título: | EVALUATION OF THE POSSIBILITY OF CONTAMINATION OF SEA WATER BY METAL IONS PRESENT IN OIL | |||||||
Autor: |
CRISTIANE MARIA DE MELLO ALVES PORTELLA |
|||||||
Colaborador(es): |
JUDITH FELCMAN - Orientador |
|||||||
Catalogação: | 25/AGO/2005 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=6942&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=6942&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.6942 | |||||||
Resumo: | ||||||||
In face of the probability of occurrences of oil spill in
marine waters and
the lack of information concerning the behavior of the
metals in such events, it is
necessary to intensify the studies of metal complexes in
order to understand the
competition between oil ligands and sea water ligands. For
such, it is necessary to
determine the stability of the complexes formed in oil and
compare them with the
correspondent ones in sea water. In the present work the
binary systems of the
complexes of hexanoic acid (a ligand that represents the
carboxylic acids of the
oil) and 1-propanethiol (which represents the mercaptans)
with the metal ions of
interest to the petroleum industry - Ni(II), V(IV) and Fe
(II) - were studied
because they are present in greater quantities. Despite
being present in smaller
quantities, Cd(II) and Pb(II) were also studied because
they are toxic and
controlled by environmental organizations. Hexanoic acid
has an oxygen atom of
the carboxylate group as donor atom, and 1-propanethiol
has a sulfur atom of the
thiol group. The complexation study was performed in
solution using
potentiometric titration and ultraviolet-visible
spectrophotometry. The
dissociation constants of the ligands and the formation
constants of the complex
species ML, ML2, ML3, MLOH, ML(OH)2, ML(OH)3, ML2OH, ML2
(OH)2 and
ML3(OH) were calculated. The values of the stability
constants can be divided in
two groups: one with the binary complexes of hexanoic acid
and the other with
the binary complexes of 1-propanethiol. Among the
complexes formed with
hexanoic acid, the ML species with metal ion Pb(II) was
the most stable. In the
system of the complexes with 1-propanethiol, the ML
species with Cd(II) was the
most stable. In the species distribution as a function of
pH including the
representative ligands of oil and sea water, it could be
observed that at pH =7 the
most stable species for the metal ions V(IV), Ni(II) and Fe
(II) were those with
hexanoic acid. In relation to ion Pb(II) the complex
formed was with 1-
propanethiol. Cd(II), this pH occurred the formation of a
small proportion of the
complex with 1-propanethiol and a higher percentual (60 percent)
of the complexes with the chloride and sulfate íons of sea
water. Since the concentration of Cd(II) is in
the range of ppb, this metal ion is less relevant when
pollution is concerned. Thus,
if the monodentate oil ligands studied in this work
preferably bind metal ions
rather than sea water ligands, than this certainly happens
with the polydentate oil
ligands such as porphyrins. Using the ultraviolet-visible
spectrophotometry
technique it was possible to observe the charge transfer
bands and the d-d bands.
A simulation of oil dispersion was also performed and the
concentration of the
metals was measured at various times. Both theoretical and
simulation data
showed that the metal ions are retained in the oil, even
when the oil is spread in
sea water.
|
||||||||