Título: | FORECASTING RETURNS ON HIGH-FREQUENCY ENVIRONMENT: A COMPARATIVE STUDY OF ECONOMETRIC MODELS AND MACHINE LEARNING TECHNIQUES | ||||||||||||
Autor: |
GUILHERME DE MORAES MASUKO |
||||||||||||
Colaborador(es): |
NATHALIE CHRISTINE GIMENES - Orientador MARCELO CUNHA MEDEIROS - Coorientador |
||||||||||||
Catalogação: | 11/FEV/2025 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69353&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69353&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.69353 | ||||||||||||
Resumo: | |||||||||||||
Forecasting returns on financial assets has been an important task
throughout the history of the financial economy. This study employs machine
learning (ML) techniques to predict portfolio returns based on the size factor,
aiming to not only improve predictions but also understand the underlying
source of predictability. Amid the challenge of identifying relevant predictors
in noisy data, this research employs a rolling window approach, incorporating
three lags of stock returns as candidate predictors to project returns one minute
ahead. Benchmark models, including in-sample averaging and autoregressive
approaches, are explored alongside ML techniques such as Ridge, LASSO,
AdaLASSO, and Random Forest. We consistently identify the superiority of
ML models over benchmark models in terms of predictability, with the Random
Forest model standing out as the most effective. Furthermore, analysis of
the predictors selected by the models revealed that they are predominantly
unexpected, short-lived and sparse.
|
|||||||||||||
|