Título: | MACHINE LEARNING TO PREDICT THE BEHAVIOR OF SANDS IN DIRECT SHEAR AND DSS TESTS | ||||||||||||
Autor: |
GLEYCE DE SOUZA BAPTISTA |
||||||||||||
Colaborador(es): |
MARINA BELLAVER CORTE - Orientador |
||||||||||||
Catalogação: | 11/NOV/2024 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68591&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68591&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.68591 | ||||||||||||
Resumo: | |||||||||||||
In geotechnics, soil resistance parameters are essential for any project. Field
and laboratory tests are essential, but still face many practical and financial
limitations. Moreover, traditional methods, relying on empirical or theoretical
relationships, often fail to encompass the soil s behavioral complexity. In light of
this, there is a highlighted need to explore alternatives to overcome these barriers.
In this context, artificial intelligence emerges as an innovative approach. This study
proposes a predictive model to analyze the stress-displacement curve in direct shear
tests and stress-strain in Direct Simple Shear (DSS) in sand. After collecting and
digitizing data from various academic sources, a robust experimental base was
formed to train three Machine Learning (ML) algorithms: Support Vector
Regression (SVR), Random Forest (RF), and Feedforward Neural Network (FNN).
Comparative analyses of the models were conducted, with a particular focus on the
evaluation of performance metrics and validation test curves. RF stood out for its
accuracy and reliability. Although the SVR and FNN models demonstrated utility,
RF emerged as the most effective. This result reinforces the viability of ML models,
particularly RF, as valuable tools for geotechnical engineers and researchers in
predicting the behavior of sands, even with a limited data set.
|
|||||||||||||
|