Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SARIMAX.JL: OPEN-SOURCE TIME SERIES MODELING IN JULIA THROUGH ADVANCED OPTIMIZATION
Autor: LUIZ FERNANDO CUNHA DUARTE
Colaborador(es): DAVI MICHEL VALLADAO - Orientador
Catalogação: 04/NOV/2024 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68558&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=68558&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.68558
Resumo:
This dissertation introduces SARIMAX.jl, a Julia package designed for time series estimation. The primary contribution of this work is the separation of model formulation from the estimation process, which allows for the selection of the most appropriate estimation method for each specific situation. SARIMAX.jl employs advanced optimization techniques to enhance stability, robustness, and accuracy in modeling SARIMA processes. The package also offers flexibility by allowing users to incorporate regularization and switch objective functions. Through a comparative study, SARIMAX.jl demonstrates superior performance across various in-sample metrics and competitive performance when compared to the R forecast package in the M4 competition monthly series, establishing it as a reliable open-source option for time series modeling. Additionally, this dissertation proposes a mixed-integer optimization approach for the specification and estimation of a specific subset of SARIMA models, known as seasonal autoregressive integrated (SARI) models. This approach guarantees global optimality in parameter estimation and the specification of the integration order and autoregressive part.
Descrição: Arquivo:   
COMPLETE PDF