Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: METROLOGICAL EVALUATION OF THE STABILITY OF GRAPHENE QUANTUM DOTS REGARDING MORPHOLOGY AND COMPOSITION-BIOLOGICAL ACTIVITY RELATIONSHIPS
Autor: ROCIO REYNA SOTO CHOCHOCCA
Colaborador(es): RICARDO QUEIROZ AUCELIO - Orientador
RENAN LIRA DE FARIAS - Coorientador
Catalogação: 15/JUL/2024 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67337&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67337&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.67337
Resumo:
Graphene quantum dots have potential for biological applications due to their optical properties and nanometric size. This study investigated for 28 days (672 h) the interactions of GQDs from different precursors (citric acid + urea and citric acid + thioacetamide) with model biomolecules (human serum albumin - HSA) and Calf thymus DNA (ctDNA). The GQDs-urea showed stability in hydrodynamic diameter (12 nm) and surface charge (- 7 mV). In contrast, GQDs-thioacetamide showed progressive aggregation from 5.0 nm initially to 22.7 nm after 28 days, without sedimentation due to charge compensation preserving colloidal dispersion. Tests revealed quenching of HSA fluorescence with increases in GQD concentration. The GQDs-urea interaction constant (Ki) fluctuated initially, stabilizing after 48 h. For GQDs-thioacetamide there was less fluctuation in Ki over 672 h, indicating conformational rearrangements of the biomolecules with the GQDs before equilibrium. Interaction with DNA monitored by UV-Vis photometric absorption titration showed weak bio-interaction of a hydrophobic/electrostatic nature for both GQDs, with apparent binding constants (∼105 L mol−1). Ethidium bromide assay revealed changes in DNA structure without intercalation of the GQDs. Statistical tests confirm the reproducibility of GQDs interactions with proteins (HSA) and DNA over 28 days (95 percent confidence). The stability of the quantification parameters over time suggests the viability of GQDs as analytical probes after long periods of bioconjugation. Thus, the study presents metrologically sound bases for the safe application of GQDs in biomedical technologies, expanding the understanding of the time-structure-activity relationship in these nanosystems.
Descrição: Arquivo:   
COMPLETE PDF