Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: BINARY MATRIX FACTORIZATION POST-PROCESSING AND APPLICATIONS
Autor: GEORGES MIRANDA SPYRIDES
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
MARCUS VINICIUS SOLEDADE POGGI DE ARAGAO - Coorientador
Catalogação: 06/FEV/2024 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=65993&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=65993&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.65993
Resumo:
Novel methods for matrix factorization introduce constraints to the decomposed matrices, allowing for unique kinds of analysis. One significant modification is the binary matrix factorization for binary matrices. This technique can reveal common subsets and mixing of subsets, making it useful in a variety of applications, such as market basket analysis, topic modeling, and recommendation systems. Despite the advantages, current approaches face a trade-off between accuracy, scalability, and explainability. While gradient descent-based methods are scalable, they yield high reconstruction errors when thresholded for binary matrices. Conversely, heuristic methods are not scalable. To overcome this, this thesis propose a post-processing procedure for discretizing matrices obtained by gradient descent. This novel approach recovers the reconstruction error post-thresholding and successfully processes larger matrices within a reasonable timeframe. We apply this technique to many applications including a novel pipeline for discovering and visualizing patterns in petrochemical batch processes.
Descrição: Arquivo:   
COMPLETE PDF