Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: A LABELLED NATURAL DEDUCTION LOGICAL FRAMEWORK
Autor: BRUNO CUCONATO CLARO
Colaborador(es): EDWARD HERMANN HAEUSLER - Orientador
Catalogação: 27/NOV/2023 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=65161&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=65161&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.65161
Resumo:
We propose a Logical Framework for labelled Natural Deduction systems. Its meta-language is based on a generalization of the rule schemas proposed by Prawitz, and the use of labels allows the definition of intentional logics, such as Modal Logic and Description Logic, as well as some quantifiers, such as Keisler s for non-denumerable-many individuals property P, or for almost all individuals P holds, or generally P holds, not to mention standard first-order logic quantifiers, all in a uniform way. We also show an implementation of this framework as a freely-available web-based proof assistant. We then compare the definition of logical systems in our implementation and in other proof assistants — Agda, Isabelle, Lean, Metamath. As a sub-product of this comparison experiment, we contribute a formal proof (in Lean) of De Zolt s postulate for three dimensions, using the Zp system proposed by Giovaninni et al.
Descrição: Arquivo:   
COMPLETE PDF